{ [Info:Type]. [es:EO+(Info)]. [A,B:Type]. [f:A  bag(B)]. [X:EClass(A)].
  [e:E].
    uiff(e  f[X];(e  X)  (bag-size(f X(e)) = 1)) }

{ Proof }



Definitions occuring in Statement :  es-filter-image: f[X] eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] and: P  Q apply: f a function: x:A  B[x] natural_number: $n int: universe: Type equal: s = t bag-size: bag-size(bs) bag: bag(T)
Definitions :  rationals: so_apply: x[s] or: P  Q l_member: (x  l) limited-type: LimitedType bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b unit: Unit sqequal: s ~ t lambda: x.A[x] real: grp_car: |g| nat: cand: A c B fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) atom: Atom es-base-E: es-base-E(es) token: "$token" fpf-dom: x  dom(f) guard: {T} squash: T fpf-cap: f(x)?z permutation: permutation(T;L1;L2) list: type List quotient: x,y:A//B[x; y] union: left + right fpf: a:A fp-B[a] intensional-universe: IType strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b es-E-interface: E(X) subtype_rel: A r B subtype: S  T suptype: suptype(S; T) bool: top: Top all: x:A. B[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ set: {x:A| B[x]}  record-select: r.x es-filter-image: f[X] axiom: Ax natural_number: $n eclass-val: X(e) apply: f a bag-size: bag-size(bs) int: implies: P  Q prop: pair: <a, b> event_ordering: EO es-E: E so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a assert: b ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] true: True equal: s = t false: False void: Void event-ordering+: EO+(Info) universe: Type uall: [x:A]. B[x] isect: x:A. B[x] member: t  T function: x:A  B[x] bag: bag(T) MaAuto: Error :MaAuto,  in-eclass: e  X CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA
Lemmas :  bag_wf top_wf member_wf es-filter-image_wf in-eclass_wf assert_wf es-interface-top eclass_wf assert_witness es-E_wf event-ordering+_wf intensional-universe_wf subtype_rel_wf permutation_wf true_wf squash_wf es-base-E_wf subtype_rel_self subtype_rel_bag bag-size_wf nat_wf eclass-val_wf event-ordering+_inc is-filter-image-sq bool_wf eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf assert_of_eq_int eq_int_wf false_wf ifthenelse_wf assert_elim eq_int_eq_true uiff_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].  \mforall{}[e:E].
    uiff(\muparrow{}e  \mmember{}\msubb{}  f[X];(\muparrow{}e  \mmember{}\msubb{}  X)  \mwedge{}  (bag-size(f  X(e))  =  1))


Date html generated: 2011_08_16-PM-04_11_22
Last ObjectModification: 2011_06_20-AM-00_43_21

Home Index