{ [Info,A:Type]. [X,Y:EClass(A)].
    (X = Y) supposing 
       ((es:EO+(Info). e:E.  ((e  X)  (e  Y)  (X(e) = Y(e)))) and 
       (es:EO+(Info). e:E.  (e  X  e  Y)) and 
       Singlevalued(X) and 
       Singlevalued(Y)) }

{ Proof }



Definitions occuring in Statement :  sv-class: Singlevalued(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: P  Q implies: P  Q universe: Type equal: s = t
Definitions :  atom: Atom es-base-E: es-base-E(es) token: "$token" fpf-cap: f(x)?z apply: f a fpf-dom: x  dom(f) bag: bag(T) bool: record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ lambda: x.A[x] eclass-val: X(e) limited-type: LimitedType top: Top in-eclass: e  X subtype: S  T pair: <a, b> fpf: a:A fp-B[a] rev_implies: P  Q decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  void: Void false: False strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B axiom: Ax implies: P  Q event-ordering+: EO+(Info) event_ordering: EO es-E: E assert: b iff: P  Q function: x:A  B[x] all: x:A. B[x] equal: s = t universe: Type uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] prop: uimplies: b supposing a isect: x:A. B[x] member: t  T sv-class: Singlevalued(X) Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  tactic: Error :tactic,  natural_number: $n bag-size: bag-size(bs) AssertBY: Error :AssertBY,  RepeatFor: Error :RepeatFor,  RepUR: Error :RepUR,  permutation: permutation(T;L1;L2) true: True bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) name_eq: name_eq(x;y) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q band: p  q bor: p q bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) quotient: x,y:A//B[x; y] single-bag: {x} eq_int: (i = j) bag-only: only(bs) sqequal: s ~ t union: left + right or: P  Q list: type List nat_plus: l_contains: A  B cmp-le: cmp-le(cmp;x;y) inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) squash: T l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) rationals: qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} atom: Atom$n i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome dstype: dstype(TypeNames; d; a) fset-member: a  s f-subset: xs  ys fset: FSet{T} fset-closed: (s closed under fs) Id: Id IdLnk: IdLnk Knd: Knd MaName: MaName l_disjoint: l_disjoint(T;l1;l2) consensus-state3: consensus-state3(T) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i consensus-rcv: consensus-rcv(V;A) infix_ap: x f y es-causl: (e < e') es-locl: (e <loc e') es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) exists: x:A. B[x] es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') decidable: Dec(P) real: grp_car: |g| nat: Complete: Error :Complete,  AllHyps: Error :AllHyps,  THENM: Error :THENM,  CollapseTHENA: Error :CollapseTHENA,  int: Decide: Error :Decide,  D: Error :D,  empty-bag: {}
Lemmas :  bag-size-zero empty-bag_wf bag-size_wf single-bag_wf bag-only_wf nat_wf eq_int_wf bag-size-one decidable__equal_int le_wf iff_functionality_wrt_iff iff_weakening_uiff assert_of_eq_int false_wf ifthenelse_wf true_wf permutation_wf es-E_wf assert_wf event-ordering+_wf eclass_wf iff_wf sv-class_wf event-ordering+_inc in-eclass_wf eclass-val_wf member_wf subtype_rel_wf bag_wf top_wf dep-eclass_subtype_rel es-base-E_wf subtype_rel_self

\mforall{}[Info,A:Type].  \mforall{}[X,Y:EClass(A)].
    (X  =  Y)  supposing 
          ((\mforall{}es:EO+(Info).  \mforall{}e:E.    ((\muparrow{}e  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  Y)  {}\mRightarrow{}  (X(e)  =  Y(e))))  and 
          (\mforall{}es:EO+(Info).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  Y))  and 
          Singlevalued(X)  and 
          Singlevalued(Y))


Date html generated: 2011_08_16-AM-11_38_50
Last ObjectModification: 2011_06_20-AM-00_30_23

Home Index