{ 
[A:
']. 
[dfp1,dfp2:DataflowProgram(A)]. 
[B:Type].
    
[G:bag(df-program-type(dfp1))
        
 bag(df-program-type(dfp2))
        
 bag(B)
        
 bag(B)]. 
[P:bag(B) 
 
]. 
[buf:bag(B)].
      (feedback-df-prog2(B;G;P;buf;dfp1;dfp2) 
 DataflowProgram(A)) 
    supposing valueall-type(B) }
{ Proof }
Definitions occuring in Statement : 
feedback-df-prog2: feedback-df-prog2(B;G;P;buf;dfp1;dfp2), 
df-program-type: df-program-type(dfp), 
dataflow-program: DataflowProgram(A), 
bool:
, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
member: t 
 T, 
function: x:A 
 B[x], 
universe: Type, 
bag: bag(T), 
valueall-type: valueall-type(T)
Definitions : 
implies: P 
 Q, 
axiom: Ax, 
feedback-df-prog2: feedback-df-prog2(B;G;P;buf;dfp1;dfp2), 
bool:
, 
df-program-type: df-program-type(dfp), 
bag: bag(T), 
all:
x:A. B[x], 
function: x:A 
 B[x], 
isect:
x:A. B[x], 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
valueall-type: valueall-type(T), 
equal: s = t, 
dataflow-program: DataflowProgram(A), 
universe: Type, 
member: t 
 T, 
subtype: S 
 T, 
void: Void, 
eq_knd: a = b, 
fpf-dom: x 
 dom(f), 
false: False, 
limited-type: LimitedType, 
bfalse: ff, 
btrue: tt, 
eq_bool: p =b q, 
lt_int: i <z j, 
le_int: i 
z j, 
eq_int: (i =
 j), 
eq_atom: x =a y, 
null: null(as), 
set_blt: a <
 b, 
grp_blt: a <
 b, 
infix_ap: x f y, 
dcdr-to-bool: [d]
, 
bl-all: (
x
L.P[x])_b, 
bl-exists: (
x
L.P[x])_b, 
b-exists: (
i<n.P[i])_b, 
eq_type: eq_type(T;T'), 
eq_atom: eq_atom$n(x;y), 
qeq: qeq(r;s), 
q_less: q_less(r;s), 
q_le: q_le(r;s), 
deq-member: deq-member(eq;x;L), 
deq-disjoint: deq-disjoint(eq;as;bs), 
deq-all-disjoint: deq-all-disjoint(eq;ass;bs), 
name_eq: name_eq(x;y), 
eq_id: a = b, 
eq_lnk: a = b, 
bimplies: p 

 q, 
bor: p 
q, 
sq_type: SQType(T), 
natural_number: $n, 
atom: Atom$n, 
int:
, 
atom: Atom, 
rec: rec(x.A[x]), 
tunion:
x:A.B[x], 
b-union: A 
 B, 
list: type List, 
or: P 
 Q, 
guard: {T}, 
l_member: (x 
 l), 
true: True, 
prop:
, 
so_lambda: 
x.t[x], 
uni_sat: a = !x:T. Q[x], 
inv_funs: InvFuns(A;B;f;g), 
inject: Inj(A;B;f), 
eqfun_p: IsEqFun(T;eq), 
refl: Refl(T;x,y.E[x; y]), 
urefl: UniformlyRefl(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
usym: UniformlySym(T;x,y.E[x; y]), 
trans: Trans(T;x,y.E[x; y]), 
utrans: UniformlyTrans(T;x,y.E[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y]), 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]), 
connex: Connex(T;x,y.R[x; y]), 
uconnex: uconnex(T; x,y.R[x; y]), 
coprime: CoPrime(a,b), 
ident: Ident(T;op;id), 
assoc: Assoc(T;op), 
comm: Comm(T;op), 
inverse: Inverse(T;op;id;inv), 
bilinear: BiLinear(T;pl;tm), 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f), 
action_p: IsAction(A;x;e;S;f), 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op), 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f), 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
cancel: Cancel(T;S;op), 
monot: monot(T;x,y.R[x; y];f), 
monoid_p: IsMonoid(T;op;id), 
group_p: IsGroup(T;op;id;inv), 
monoid_hom_p: IsMonHom{M1,M2}(f), 
grp_leq: a 
 b, 
integ_dom_p: IsIntegDom(r), 
prime_ideal_p: IsPrimeIdeal(R;P), 
no_repeats: no_repeats(T;l), 
value-type: value-type(T), 
assert:
b, 
is_list_splitting: is_list_splitting(T;L;LL;L2;f), 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x), 
bag-member: bag-member(T;x;bs), 
req: x = y, 
rnonneg: rnonneg(r), 
rleq: x 
 y, 
i-member: r 
 I, 
partitions: partitions(I;p), 
modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f), 
fpf-sub: f 
 g, 
squash:
T, 
sq_stable: SqStable(P), 
fpf: a:A fp-> B[a], 
quotient: x,y:A//B[x; y], 
strong-subtype: strong-subtype(A;B), 
le: A 
 B, 
ge: i 
 j , 
not:
A, 
less_than: a < b, 
and: P 
 Q, 
uiff: uiff(P;Q), 
subtype_rel: A 
r B, 
so_apply: x[s], 
it:
, 
inr: inr x , 
isl: isl(x), 
bnot: 
b, 
band: p 
 q, 
ifthenelse: if b then t else f fi , 
let: let, 
empty-bag: {}, 
apply: f a, 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
spread: spread def, 
spreadn: spread3, 
evalall: evalall(t), 
lambda:
x.A[x], 
inl: inl x , 
unit: Unit, 
union: left + right, 
pair: <a, b>, 
set: {x:A| B[x]} , 
product: x:A 
 B[x]
Lemmas : 
unit_wf, 
member_wf, 
evalall_wf, 
subtype_rel_wf, 
sq_stable__all, 
squash_wf, 
sq_stable__equal, 
sq_stable__valueall-type, 
product-valueall-type, 
union-valueall-type, 
equal-valueall-type, 
bag-valueall-type, 
empty-bag_wf, 
eqtt_to_assert, 
assert_wf, 
not_wf, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
bnot_wf, 
isl_wf, 
ifthenelse_wf, 
bfalse_wf, 
it_wf, 
dataflow-program_wf, 
valueall-type_wf, 
df-program-type_wf, 
bool_wf, 
bag_wf
\mforall{}[A:\mBbbU{}'].  \mforall{}[dfp1,dfp2:DataflowProgram(A)].  \mforall{}[B:Type].
    \mforall{}[G:bag(df-program-type(dfp1))  {}\mrightarrow{}  bag(df-program-type(dfp2))  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(B)].
    \mforall{}[P:bag(B)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[buf:bag(B)].
        (feedback-df-prog2(B;G;P;buf;dfp1;dfp2)  \mmember{}  DataflowProgram(A)) 
    supposing  valueall-type(B)
Date html generated:
2011_08_16-AM-09_43_41
Last ObjectModification:
2011_06_18-AM-08_34_41
Home
Index