{ [the_es:EO]. [e:E]. [n:].
    firstn(n;before(e)) ~ before(before(e)[n]) supposing n < ||before(e)|| }

{ Proof }



Definitions occuring in Statement :  es-before: before(e) es-E: E event_ordering: EO select: l[i] firstn: firstn(n;as) length: ||as|| nat: uimplies: b supposing a uall: [x:A]. B[x] less_than: a < b sqequal: s ~ t
Definitions :  implies: P  Q sqequal: s ~ t es-before: before(e) length: ||as|| set: {x:A| B[x]}  real: grp_car: |g| subtype: S  T int: all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] event_ordering: EO uimplies: b supposing a less_than: a < b prop: nat: equal: s = t es-E: E member: t  T Repeat: Error :Repeat,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  lelt: i  j < k int_seg: {i..j} es-le: e loc e'  es-causle: e c e' es-locl: (e <loc e') record: record(x.T[x]) es-loc: loc(e) Id: Id top: Top strong-subtype: strong-subtype(A;B) tl: tl(l) hd: hd(l) dep-isect: Error :dep-isect,  record+: record+ record-select: r.x sq_type: SQType(T) list: type List subtype_rel: A r B firstn: firstn(n;as) select: l[i] bfalse: ff decide: case b of inl(x) =s[x] | inr(y) =t[y] btrue: tt uiff: uiff(P;Q) and: P  Q iff: P  Q eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q band: p  q bor: p q assert: b bnot: b unit: Unit union: left + right bool: true: True squash: T es-causl: (e < e') apply: f a limited-type: LimitedType universe: Type minus: -n add: n + m subtract: n - m void: Void false: False not: A natural_number: $n le: A  B ge: i  j  strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] product: x:A  B[x] es-pred: pred(e) nil: [] cons: [car / cdr] append: as @ bs es-first: first(e) ifthenelse: if b then t else f fi  guard: {T}
Lemmas :  int_subtype_base firstn_all lt_int_wf le_int_wf assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff assert_of_lt_int select-append ge_wf nat_properties es-causl-swellfnd le_wf member_wf es-causl_wf bool_wf assert_wf iff_weakening_uiff eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf es-first_wf es-pred_wf append_wf firstn_wf subtype_base_sq list_subtype_base length-append es-before_wf2 Id_wf top_wf es-loc_wf length_wf_nat es-pred-causl firstn_append false_wf event_ordering_wf nat_wf es-E_wf length_wf1 es-before_wf

\mforall{}[the$_{es}$:EO].  \mforall{}[e:E].  \mforall{}[n:\mBbbN{}].    firstn(n;before(e))  \msim{}  before(before(e)[n])  su\000Cpposing  n  <  ||before(e)||


Date html generated: 2011_08_16-AM-10_43_13
Last ObjectModification: 2011_06_18-AM-09_19_40

Home Index