{ [A:Type]. [d1,d2,d4:EqDecider(A)]. [f,g:a:A fp-Type]. [x:A].
    {g(x)?Top r f(x)?Top supposing f  g} }

{ Proof }



Definitions occuring in Statement :  fpf-sub: f  g fpf-cap: f(x)?z fpf: a:A fp-B[a] subtype_rel: A r B uimplies: b supposing a uall: [x:A]. B[x] top: Top guard: {T} universe: Type deq: EqDecider(T)
Definitions :  not: A implies: P  Q false: False
Lemmas :  fpf-dom_functionality2 eqtt_to_assert iff_weakening_uiff uiff_transitivity eqff_to_assert assert_of_bnot fpf-ap_wf bool_wf not_wf assert_wf bnot_wf fpf-cap_functionality_wrt_sub subtype_rel_self decidable__assert fpf-dom_wf member_wf fpf-trivial-subtype-top guard_wf fpf-sub_wf subtype_rel_wf fpf-cap_wf top_wf fpf_wf deq_wf

\mforall{}[A:Type].  \mforall{}[d1,d2,d4:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  Type].  \mforall{}[x:A].
    \{g(x)?Top  \msubseteq{}r  f(x)?Top  supposing  f  \msubseteq{}  g\}


Date html generated: 2011_08_10-AM-07_58_02
Last ObjectModification: 2011_06_18-AM-08_18_06

Home Index