{ [A:Type]. [eq:EqDecider(A)]. [B:A  Type]. [f,g:a:A fp-B[a]]. [x:A].
  [z:B[x]].
    f  g(x)?z = g(x)?f(x)?z supposing f || g }

{ Proof }



Definitions occuring in Statement :  fpf-join: f  g fpf-compatible: f || g fpf-cap: f(x)?z fpf: a:A fp-B[a] uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type equal: s = t deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] so_apply: x[s] uimplies: b supposing a fpf-cap: f(x)?z member: t  T prop: so_lambda: x.t[x] or: P  Q all: x:A. B[x] implies: P  Q ifthenelse: if b then t else f fi  btrue: tt bfalse: ff top: Top and: P  Q guard: {T} fpf-compatible: f || g iff: P  Q bool: unit: Unit not: A false: False it:
Lemmas :  fpf-compatible_wf fpf_wf deq_wf fpf-dom_wf fpf-join_wf top_wf fpf-trivial-subtype-top bool_wf assert_wf fpf-join-dom not_wf bnot_wf not_functionality_wrt_iff iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot fpf-join-ap-sq fpf-ap_wf

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f,g:a:A  fp->  B[a]].  \mforall{}[x:A].  \mforall{}[z:B[x]].
    f  \moplus{}  g(x)?z  =  g(x)?f(x)?z  supposing  f  ||  g


Date html generated: 2011_08_10-AM-08_07_05
Last ObjectModification: 2011_06_18-AM-08_25_06

Home Index