{ [A:Type]. [eq:EqDecider(A)]. [B:A  Type]. [f,g,h:a:A fp-B[a]].
    uiff(h || f  g;h || f  h || g) supposing f || g }

{ Proof }



Definitions occuring in Statement :  fpf-join: f  g fpf-compatible: f || g fpf: a:A fp-B[a] uiff: uiff(P;Q) uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] and: P  Q function: x:A  B[x] universe: Type deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] so_apply: x[s] uimplies: b supposing a fpf-compatible: f || g uiff: uiff(P;Q) and: P  Q member: t  T all: x:A. B[x] implies: P  Q prop: so_lambda: x.t[x] assert: b or: P  Q btrue: tt ifthenelse: if b then t else f fi  true: True iff: P  Q rev_implies: P  Q guard: {T} sq_type: SQType(T) bfalse: ff
Lemmas :  assert_wf fpf-dom_wf fpf-trivial-subtype-top fpf-compatible_wf fpf-join_wf top_wf fpf_wf deq_wf fpf-join-dom subtype_base_sq bool_wf bool_subtype_base assert_elim fpf-join-ap fpf-ap_wf not_wf bnot_wf bool_cases iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot fpf-compatible-join

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f,g,h:a:A  fp->  B[a]].
    uiff(h  ||  f  \moplus{}  g;h  ||  f  \mwedge{}  h  ||  g)  supposing  f  ||  g


Date html generated: 2011_08_10-AM-08_05_40
Last ObjectModification: 2011_06_18-AM-08_23_23

Home Index