{ [A:Type]. [B,C:A  Type]. [eq:EqDecider(A)]. [f:a:A fp-B[a]].
  [g:a:A fp-C[a]].
    g  f  g 
    supposing x:A
                (((x  dom(f))  (x  dom(g)))
                 ((B[x] r C[x]) c (f(x) = g(x)))) }

{ Proof }



Definitions occuring in Statement :  fpf-join: f  g fpf-sub: f  g fpf-ap: f(x) fpf-dom: x  dom(f) fpf: a:A fp-B[a] subtype_rel: A r B assert: b uimplies: b supposing a uall: [x:A]. B[x] cand: A c B so_apply: x[s] all: x:A. B[x] implies: P  Q and: P  Q function: x:A  B[x] universe: Type equal: s = t deq: EqDecider(T)
Definitions :  eqof: eqof(d) union: left + right or: P  Q eq_knd: a = b fpf-join: f  g axiom: Ax void: Void false: False limited-type: LimitedType intensional-universe: IType strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) true: True guard: {T} btrue: tt sq_type: SQType(T) bool: list_ind: list_ind def reduce: reduce(f;k;as) deq-member: deq-member(eq;x;L) fpf-ap: f(x) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  subtype: S  T l_member: (x  l) pair: <a, b> list: type List top: Top fpf-dom: x  dom(f) prop: and: P  Q subtype_rel: A r B cand: A c B implies: P  Q uimplies: b supposing a product: x:A  B[x] lambda: x.A[x] set: {x:A| B[x]}  assert: b apply: f a so_apply: x[s] so_lambda: x.t[x] fpf: a:A fp-B[a] isect: x:A. B[x] all: x:A. B[x] deq: EqDecider(T) fpf-sub: f  g uall: [x:A]. B[x] function: x:A  B[x] universe: Type member: t  T equal: s = t CollapseTHEN: Error :CollapseTHEN,  Unfold: Error :Unfold,  tactic: Error :tactic,  rev_implies: P  Q iff: P  Q unit: Unit pi2: snd(t) fpf-cap: f(x)?z int: bnot: b bor: p q band: p  q bimplies: p  q eq_lnk: a = b eq_id: a = b eq_str: Error :eq_str,  deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) q_le: q_le(r;s) q_less: q_less(r;s) qeq: qeq(r;s) eq_atom: eq_atom$n(x;y) eq_type: eq_type(T;T') b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] infix_ap: x f y grp_blt: a < b set_blt: a < b null: null(as) eq_atom: x =a y eq_int: (i = j) le_int: i z j lt_int: i <z j eq_bool: p =b q bfalse: ff
Lemmas :  bnot_wf not_wf assert_of_bnot eqff_to_assert uiff_transitivity iff_weakening_uiff eqtt_to_assert fpf-join-dom2 fpf-sub_wf top_wf member_wf fpf_wf fpf-ap_wf fpf-dom_wf assert_wf subtype_rel_wf subtype_base_sq fpf-trivial-subtype-top l_member_wf assert_elim bool_wf bool_subtype_base deq_wf intensional-universe_wf pair_wf assert_witness false_wf ifthenelse_wf true_wf fpf-join_wf

\mforall{}[A:Type].  \mforall{}[B,C:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[g:a:A  fp->  C[a]].
    g  \msubseteq{}  f  \moplus{}  g  supposing  \mforall{}x:A.  (((\muparrow{}x  \mmember{}  dom(f))  \mwedge{}  (\muparrow{}x  \mmember{}  dom(g)))  {}\mRightarrow{}  ((B[x]  \msubseteq{}r  C[x])  c\mwedge{}  (f(x)  =  g(x))))


Date html generated: 2011_08_10-AM-08_00_32
Last ObjectModification: 2011_06_18-AM-08_19_30

Home Index