{ 
S:Id List. 
G:Graph(S). 
i:{i:Id| (i 
 S)} . 
j:Id.  ((i
j)
G 
 (j 
 S)) }
{ Proof }
Definitions occuring in Statement : 
id-graph-edge: (i
j)
G, 
id-graph: Graph(S), 
Id: Id, 
all:
x:A. B[x], 
implies: P 
 Q, 
set: {x:A| B[x]} , 
list: type List, 
l_member: (x 
 l)
Definitions : 
Try: Error :Try, 
CollapseTHEN: Error :CollapseTHEN, 
Auto: Error :Auto, 
less_than: a < b, 
Id: Id, 
equal: s = t, 
product: x:A 
 B[x], 
cand: A c
 B, 
exists:
x:A. B[x], 
l_member: (x 
 l), 
list: type List, 
id-graph: Graph(S), 
set: {x:A| B[x]} , 
apply: f a, 
prop:
, 
function: x:A 
 B[x], 
implies: P 
 Q, 
all:
x:A. B[x], 
id-graph-edge: (i
j)
G, 
nat:
, 
uall:
[x:A]. B[x], 
isect:
x:A. B[x], 
subtype_rel: A 
r B, 
uiff: uiff(P;Q), 
and: P 
 Q, 
uimplies: b supposing a, 
not:
A, 
ge: i 
 j , 
le: A 
 B, 
atom: Atom$n, 
strong-subtype: strong-subtype(A;B), 
member: t 
 T, 
subtype: S 
 T, 
universe: Type, 
RepeatFor: Error :RepeatFor, 
HypSubst: Error :HypSubst, 
select: l[i], 
atom: Atom, 
sq_type: SQType(T), 
guard: {T}, 
tactic: Error :tactic, 
Unfold: Error :Unfold, 
MaAuto: Error :MaAuto, 
int:
, 
grp_car: |g|, 
real:
, 
false: False, 
void: Void, 
length: ||as||, 
natural_number: $n, 
bool:
, 
sq_stable: SqStable(P), 
squash:
T, 
modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f), 
partitions: partitions(I;p), 
i-member: r 
 I, 
rleq: x 
 y, 
rnonneg: rnonneg(r), 
req: x = y, 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x), 
is_list_splitting: is_list_splitting(T;L;LL;L2;f), 
assert:
b, 
valueall-type: valueall-type(T), 
value-type: value-type(T), 
no_repeats: no_repeats(T;l), 
prime_ideal_p: IsPrimeIdeal(R;P), 
integ_dom_p: IsIntegDom(r), 
grp_leq: a 
 b, 
monoid_hom_p: IsMonHom{M1,M2}(f), 
group_p: IsGroup(T;op;id;inv), 
monoid_p: IsMonoid(T;op;id), 
monot: monot(T;x,y.R[x; y];f), 
cancel: Cancel(T;S;op), 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f), 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op), 
action_p: IsAction(A;x;e;S;f), 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f), 
bilinear: BiLinear(T;pl;tm), 
inverse: Inverse(T;op;id;inv), 
comm: Comm(T;op), 
assoc: Assoc(T;op), 
ident: Ident(T;op;id), 
coprime: CoPrime(a,b), 
uconnex: uconnex(T; x,y.R[x; y]), 
connex: Connex(T;x,y.R[x; y]), 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y]), 
utrans: UniformlyTrans(T;x,y.E[x; y]), 
trans: Trans(T;x,y.E[x; y]), 
usym: UniformlySym(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
urefl: UniformlyRefl(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
eqfun_p: IsEqFun(T;eq), 
inject: Inj(A;B;f), 
inv_funs: InvFuns(A;B;f;g), 
uni_sat: a = !x:T. Q[x], 
iff: P 

 Q, 
decidable: Dec(P), 
fset-closed: (s closed under fs), 
f-subset: xs 
 ys, 
fset-member: a 
 s, 
p-outcome: Outcome, 
i-closed: i-closed(I), 
i-finite: i-finite(I), 
sq_exists:
x:{A| B[x]}, 
q-rel: q-rel(r;x), 
qless: r < s, 
qle: r 
 s, 
fun-connected: y is f*(x), 
infix_ap: x f y, 
l_all: (
x
L.P[x]), 
l_exists: (
x
L. P[x]), 
l_disjoint: l_disjoint(T;l1;l2), 
prime: prime(a), 
reducible: reducible(a), 
l_contains: A 
 B, 
or: P 
 Q, 
union: left + right, 
Knd: Knd, 
IdLnk: IdLnk, 
true: True, 
pair: <a, b>
Lemmas : 
decidable__equal_Id, 
decidable__l_member, 
sq_stable_from_decidable, 
length_wf_nat, 
select_wf, 
atom2_subtype_base, 
subtype_base_sq, 
Id_wf, 
id-graph_wf, 
l_member_wf, 
member_wf, 
nat_wf
\mforall{}S:Id  List.  \mforall{}G:Graph(S).  \mforall{}i:\{i:Id|  (i  \mmember{}  S)\}  .  \mforall{}j:Id.    ((i{}\mrightarrow{}j)\mmember{}G  {}\mRightarrow{}  (j  \mmember{}  S))
Date html generated:
2011_08_10-AM-07_50_38
Last ObjectModification:
2011_06_18-AM-08_13_41
Home
Index