{ [T:Type]. [g:LabeledGraph(T)]. [k:lg-size(g)]. [x:lg-size(g) - 1].
    (lg-label(lg-remove(g;k);x) ~ if x <z k
    then lg-label(g;x)
    else lg-label(g;x + 1)
    fi ) }

{ Proof }



Definitions occuring in Statement :  lg-label: lg-label(g;x) lg-remove: lg-remove(g;n) lg-size: lg-size(g) labeled-graph: LabeledGraph(T) lt_int: i <z j ifthenelse: if b then t else f fi  int_seg: {i..j} uall: [x:A]. B[x] subtract: n - m add: n + m natural_number: $n universe: Type sqequal: s ~ t
Definitions :  lg-label: lg-label(g;x) lg-remove: lg-remove(g;n) member: t  T nat: top: Top int_seg: {i..j} lelt: i  j < k and: P  Q le: A  B not: A implies: P  Q false: False all: x:A. B[x] lg-size: lg-size(g) rev_implies: P  Q iff: P  Q prop: int_iseg: {i...j} so_lambda: x.t[x] ifthenelse: if b then t else f fi  btrue: tt bfalse: ff pi1: fst(t) spreadn: spread3 labeled-graph: LabeledGraph(T) uall: [x:A]. B[x] sq_type: SQType(T) uimplies: b supposing a so_apply: x[s] guard: {T} bool: unit: Unit it:
Lemmas :  lg-size_wf int_seg_wf nat_wf labeled-graph_wf select-map append_wf top_wf firstn_wf nth_tl_wf le_wf length_wf1 select-append length-map-sq lg-size-remove length_firstn subtype_base_sq set_subtype_base int_subtype_base lt_int_wf bool_wf iff_weakening_uiff uiff_transitivity assert_wf eqtt_to_assert assert_of_lt_int le_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int select-firstn select_wf int_seg_properties select-nth_tl

\mforall{}[T:Type].  \mforall{}[g:LabeledGraph(T)].  \mforall{}[k:\mBbbN{}lg-size(g)].  \mforall{}[x:\mBbbN{}lg-size(g)  -  1].
    (lg-label(lg-remove(g;k);x)  \msim{}  if  x  <z  k  then  lg-label(g;x)  else  lg-label(g;x  +  1)  fi  )


Date html generated: 2011_08_16-PM-06_45_15
Last ObjectModification: 2011_06_18-AM-10_57_14

Home Index