{ n:. s:Atom.  ((s  nat-to-str(n))  (s  ``0 1 2 3 4 5 6 7 8 9``)) }

{ Proof }



Definitions occuring in Statement :  nat-to-str: nat-to-str(n) nat: all: x:A. B[x] implies: P  Q cons: [car / cdr] nil: [] token: "$token" atom: Atom l_member: (x  l)
Definitions :  nat: sqequal: s ~ t function: x:A  B[x] all: x:A. B[x] not: A atom: Atom equal: s = t l_member: (x  l) natural_number: $n member: t  T token: "$token" int: less_than: a < b universe: Type le: A  B prop: product: x:A  B[x] and: P  Q lelt: i  j < k implies: P  Q false: False void: Void set: {x:A| B[x]}  int_seg: {i..j} p-outcome: Outcome strong-subtype: strong-subtype(A;B) subtype_rel: A r B exists: x:A. B[x] guard: {T} rationals: subtype: S  T real: add: n + m pair: <a, b> nil: [] cons: [car / cdr] nat-to-str: nat-to-str(n) bool: list: type List tl: tl(l) hd: hd(l) sq_type: SQType(T) apply: f a so_apply: x[s] union: left + right or: P  Q append: as @ bs iff: P  Q assert: b bfalse: ff eq_int: (i = j) limited-type: LimitedType bnot: b btrue: tt eq_atom: x =a y null: null(as) set_blt: Error :set_blt,  infix_ap: x f y grp_blt: Error :grp_blt,  b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) q_le: q_le(r;s) q_less: q_less(a;b) qeq: qeq(r;s) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) deq-member: deq-member(eq;x;L) bimplies: p  q band: p  q bor: p q lt_int: i <z j le_int: i z j rev_implies: P  Q subtract: n - m grp_car: Error :grp_car,  minus: -n ge: i  j  THENL_cons: Error :THENL_nil,  tactic: Error :tactic,  THENL_cons: Error :THENL_cons,  MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  SplitOn: Error :SplitOn,  CollapseTHENA: Error :CollapseTHENA,  THENL_v2: Error :THENL,  RepeatFor: Error :RepeatFor,  proper-iseg: L1 < L2 remainder: n rem m length: ||as|| iseg: l1  l2 gt: i > j nat_plus: divide: n  m D: Error :D,  THENM: Error :THENM,  nequal: a  b  T  int_nzero: multiply: n * m
Lemmas :  rem_bounds_1 div_rem_sum int_nzero_wf nequal_wf member_append nat_plus_wf divide_wf remainder_wf nat_properties ge_wf nat-to-str_wf cons_member bool_cases eqtt_to_assert bool_sq eqff_to_assert iff_transitivity assert_of_bnot not_functionality_wrt_iff assert_of_eq_int eq_int_wf bool_wf bnot_wf not_wf assert_wf member_singleton atom_sq l_member_wf select_member nat_wf member_wf le_wf

\mforall{}n:\mBbbN{}.  \mforall{}s:Atom.    ((s  \mmember{}  nat-to-str(n))  {}\mRightarrow{}  (s  \mmember{}  ``0  1  2  3  4  5  6  7  8  9``))


Date html generated: 2010_08_26-PM-11_30_25
Last ObjectModification: 2010_04_23-PM-05_02_40

Home Index