{ [n,m:].
    nat-to-incomparable(n)  nat-to-incomparable(m) supposing (n = m) }

{ Proof }



Definitions occuring in Statement :  nat-to-incomparable: nat-to-incomparable(n) nat: uimplies: b supposing a uall: [x:A]. B[x] not: A int: atom: Atom equal: s = t iseg: l1  l2
Definitions :  tl: tl(l) hd: hd(l) exists: x:A. B[x] nil: [] token: "$token" cons: [car / cdr] nat-to-str: nat-to-str(n) append: as @ bs union: left + right or: P  Q iff: P  Q real: grp_car: |g| subtype: S  T limited-type: LimitedType universe: Type list: type List name: Name strong-subtype: strong-subtype(A;B) ge: i  j  assert: b less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] le: A  B set: {x:A| B[x]}  nat-to-incomparable: nat-to-incomparable(n) equal: s = t int: prop: lambda: x.A[x] atom: Atom iseg: l1  l2 uall: [x:A]. B[x] nat: not: A implies: P  Q function: x:A  B[x] false: False void: Void uimplies: b supposing a isect: x:A. B[x] member: t  T Auto: Error :Auto,  D: Error :D,  THENM: Error :THENM,  CollapseTHEN: Error :CollapseTHEN,  Unfold: Error :Unfold,  Try: Error :Try,  THEN: Error :THEN,  CollapseTHENA: Error :CollapseTHENA,  l_member: (x  l) guard: {T} int_seg: {i..j} quotient: x,y:A//B[x; y] divides: b | a assoced: a ~ b set_car: |p| set_leq: a  b set_lt: a <p b grp_lt: a < b rng_car: |r| unit: Unit nat_plus: rationals: atom: Atom$n dstype: dstype(TypeNames; d; a) fset: FSet{T} l_contains: A  B inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) squash: T l_disjoint: l_disjoint(T;l1;l2) l_exists: (xL. P[x]) l_all: (xL.P[x]) apply: f a infix_ap: x f y fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) decidable: Dec(P) rev_implies: P  Q map: map(f;as) last: last(L) remove-repeats: remove-repeats(eq;L) select: l[i] bool: cand: A c B decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  eqof: eqof(d) atom-deq: AtomDeq sqequal: s ~ t sq_type: SQType(T) pair: <a, b> length: ||as|| add: n + m natural_number: $n so_apply: x[s] true: True str-to-nat: str-to-nat(s)
Lemmas :  str-to-nat-to-str int_subtype_base str-to-nat_wf squash_wf true_wf tl_wf length_wf1 ge_wf hd_wf general-append-cancellation iseg_nil cons_iseg list_subtype_base atom_subtype_base length_wf_nat assert_wf subtype_base_sq assert-deq-member atom-deq_wf member-nat-to-str l_member_subtype member_append decidable__l_member decidable__atom_equal cons_member l_member_wf iseg_member subtype_rel_wf name_wf nat-to-incomparable_wf member_wf iseg_wf false_wf not_wf nat_wf iseg_append_iff append_wf nat-to-str_wf

\mforall{}[n,m:\mBbbN{}].    \mneg{}nat-to-incomparable(n)  \mleq{}  nat-to-incomparable(m)  supposing  \mneg{}(n  =  m)


Date html generated: 2011_08_10-AM-07_43_03
Last ObjectModification: 2011_06_18-AM-08_09_49

Home Index