{ [n:]. (str-to-nat(nat-to-str(n)) = n) }

{ Proof }



Definitions occuring in Statement :  str-to-nat: str-to-nat(s) nat-to-str: nat-to-str(n) nat: uall: [x:A]. B[x] int: equal: s = t
Definitions :  uall: [x:A]. B[x] nat: str-to-nat: str-to-nat(s) nat-to-str: nat-to-str(n) all: x:A. B[x] implies: P  Q ge: i  j  member: t  T le: A  B not: A false: False prop: ycomb: Y ifthenelse: if b then t else f fi  btrue: tt str-to-nat-plus: str-to-nat-plus(s;n) str1-to-nat: str1-to-nat(a) eq_atom: x =a y bfalse: ff int_nzero: nequal: a  b  T  nat_plus: and: P  Q length: ||as|| append: as @ bs top: Top subtype: S  T rev_implies: P  Q iff: P  Q so_lambda: x.t[x] label: ...$L... t bool: unit: Unit sq_type: SQType(T) uimplies: b supposing a guard: {T} so_apply: x[s] it:
Lemmas :  nat_properties ge_wf str-to-nat_wf nat-to-str_wf le_wf nat_wf eq_int_wf bool_wf iff_weakening_uiff uiff_transitivity assert_wf eqtt_to_assert assert_of_eq_int not_wf bnot_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff div_rem_sum nequal_wf rem_bounds_1 divide_wf append_wf length_wf1 remainder_wf subtype_base_sq int_subtype_base str-to-nat-plus_wf str1-to-nat_wf non_neg_length length_wf_nat top_wf exp_wf2 str-to-nat-plus-property add_functionality_wrt_eq exp_wf set_subtype_base length_nil length_cons length_append exp_add exp1

\mforall{}[n:\mBbbN{}].  (str-to-nat(nat-to-str(n))  =  n)


Date html generated: 2011_08_10-AM-07_42_48
Last ObjectModification: 2011_06_18-AM-08_09_45

Home Index