{ norm-combinator-def()  id-fun(CombinatorDef) }

{ Proof }



Definitions occuring in Statement :  norm-combinator-def: norm-combinator-def() combinator-def: CombinatorDef member: t  T id-fun: id-fun(T)
Definitions :  length: ||as|| int: equal: s = t universe: Type list: type List set: {x:A| B[x]}  squash: T nat: all: x:A. B[x] tactic: Error :tactic,  RepeatFor: Error :RepeatFor,  D: Error :D,  cons: [car / cdr] Try: Error :Try,  CollapseTHEN: Error :CollapseTHEN,  nil: [] MaAuto: Error :MaAuto,  prop: label: ...$L... t not: A false: False true: True bool: tl: tl(l) hd: hd(l) strong-subtype: strong-subtype(A;B) fpf: a:A fp-B[a] subtype_rel: A r B pair: <a, b> eclass: EClass(A[eo; e]) product: x:A  B[x] implies: P  Q ndlist: ndlist(T) listp: A List add: n + m minus: -n ge: i  j  le: A  B subtype: S  T top: Top isect: x:A. B[x] void: Void function: x:A  B[x] subtract: n - m natural_number: $n less_than: a < b member: t  T decision: Decision inl: inl x  uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) valueall-type: valueall-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) es-E-interface: E(X) atom: Atom$n atom: Atom rec: rec(x.A[x]) tunion: x:A.B[x] b-union: A  B in-eclass: e  X eq_knd: a = b fpf-dom: x  dom(f) limited-type: LimitedType bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b unit: Unit intensional-universe: IType so_apply: x[s] or: P  Q guard: {T} l_member: (x  l) assert: b value-type: value-type(T) decide: case b of inl(x) =s[x] | inr(y) =t[y] empty-bag: {} uiff: uiff(P;Q) union: left + right permutation: permutation(T;L1;L2) quotient: x,y:A//B[x; y] rationals: lelt: i  j < k cand: A c B real: grp_car: |g| lambda: x.A[x] and: P  Q int_seg: {i..j} select: l[i] apply: f a bag: bag(T) ifthenelse: if b then t else f fi  so_lambda: x.t[x] id-fun: id-fun(T) sq-id-fun: sq-id-fun(T) uimplies: b supposing a uall: [x:A]. B[x] norm-pair: norm-pair(Na;Nb) combinator-def: CombinatorDef norm-combinator-def: norm-combinator-def()
Lemmas :  bag_wf ifthenelse_wf int_seg_properties select_wf int_seg_wf bool_wf norm-pair_wf permutation_wf empty-bag_wf subtype_rel_wf value-type_wf id-fun_wf intensional-universe_wf eqtt_to_assert assert_wf not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf le_wf set-value-type int-value-type product-value-type sq_stable__value-type unit_wf union-value-type sq_stable__all function-value-type false_wf length_wf1 top_wf member_wf length_wf_nat non_neg_length length_cons length_wf2 length_nil nat_ind_tp nat_wf squash_wf nat_properties ge_wf

norm-combinator-def()  \mmember{}  id-fun(CombinatorDef)


Date html generated: 2011_08_17-PM-04_30_07
Last ObjectModification: 2011_06_18-AM-11_41_51

Home Index