{ [M:Type  Type]
    S0:System(P.M[P]). r:fulpRunType(P.M[P]).
      n:. x:Id.
        m:n
         ((run-prior-state(S0;r;<n, x>)
         = let info,Cs,G = r m in 
           mapfilter(c.(snd(c));c.fst(c) = x;Cs))
          (t:{m + 1..n}. (is-run-event(r;t;x)))) 
        supposing 0 < n 
      supposing (r 0) = <inr  , S0}

{ Proof }



Definitions occuring in Statement :  run-prior-state: run-prior-state(S0;r;e) is-run-event: is-run-event(r;t;x) fulpRunType: fulpRunType(T.M[T]) System: System(P.M[P]) pMsg: pMsg(P.M[P]) Process: Process(P.M[P]) eq_id: a = b Id: Id assert: b int_seg: {i..j} nat: it: spreadn: spread3 uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) pi2: snd(t) all: x:A. B[x] exists: x:A. B[x] not: A and: P  Q unit: Unit less_than: a < b apply: f a lambda: x.A[x] function: x:A  B[x] pair: <a, b> product: x:A  B[x] inr: inr x  union: left + right list: type List add: n + m natural_number: $n int: universe: Type equal: s = t mapfilter: mapfilter(f;P;L)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] so_apply: x[s] fulpRunType: fulpRunType(T.M[T]) uimplies: b supposing a nat: not: A member: t  T implies: P  Q ge: i  j  le: A  B false: False prop: pRunType: pRunType(T.M[T]) top: Top so_lambda: x.t[x] exists: x:A. B[x] int_seg: {i..j} and: P  Q lelt: i  j < k spreadn: spread3 pi2: snd(t) assert: b is-run-event: is-run-event(r;t;x) band: p  q isl: isl(x) btrue: tt bfalse: ff ifthenelse: if b then t else f fi  run-prior-state: run-prior-state(S0;r;e) mapfilter: mapfilter(f;P;L) pi1: fst(t) run-event-local-pred: run-event-local-pred(r;e) run-event-loc: run-event-loc(e) null: null(as) run-event-history: run-event-history(r;e) let: let from-upto: [n, m) run-event-step: run-event-step(e) ycomb: Y lt_int: i <z j map: map(f;as) filter: filter(P;l) reduce: reduce(f;k;as) nat_plus: last: last(L) select: l[i] length: ||as|| le_int: i z j bnot: b run-event-state: run-event-state(r;e) cand: A c B runEvents: runEvents(r) subtype: S  T true: True System: System(P.M[P]) decidable: Dec(P) or: P  Q sq_type: SQType(T) guard: {T} component: component(P.M[P]) unit: Unit bool: iff: P  Q it: upto: upto(n)
Lemmas :  nat_properties ge_wf nat_wf subtype_rel_function Id_wf pMsg_wf unit_wf System_wf top_wf ldag_wf pInTransit_wf subtype_rel_self subtype_rel_simple_product fulpRunType_wf pRunType_wf le_wf it_wf decidable__equal_int subtype_base_sq int_subtype_base assert_wf is-run-event_wf int_seg_wf Process_wf run-prior-state_wf not_wf mapfilter_wf component_wf eq_id_wf pi1_wf_top false_wf isl_wf bool_wf iff_weakening_uiff eqtt_to_assert outl_wf uiff_transitivity bnot_wf eqff_to_assert assert_of_bnot bfalse_wf map_wf filter_wf int_seg_properties decidable__assert upto_decomp1 from-upto_wf l_member_wf mapfilter-append null_append last_append null_wf3 run-event-state_wf append-nil runEvents_wf filter_wf3 bool_subtype_base pi2_wf assert_elim last_wf

\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}S0:System(P.M[P]).  \mforall{}r:fulpRunType(P.M[P]).
        \mforall{}n:\mBbbN{}.  \mforall{}x:Id.
            \mexists{}m:\mBbbN{}n
              ((run-prior-state(S0;r;<n,  x>)
              =  let  info,Cs,G  =  r  m  in 
                  mapfilter(\mlambda{}c.(snd(c));\mlambda{}c.fst(c)  =  x;Cs))
              \mwedge{}  (\mforall{}t:\{m  +  1..n\msupminus{}\}.  (\mneg{}\muparrow{}is-run-event(r;t;x)))) 
            supposing  0  <  n 
        supposing  (r  0)  =  <inr  \mcdot{}  ,  S0>


Date html generated: 2011_08_16-PM-07_00_23
Last ObjectModification: 2011_06_18-AM-11_15_02

Home Index