Nuprl Lemma : simple-comb-1-classrel

[Info,B,C:Type]. [f:B  C]. [X:EClass(B)]. [es:EO+(Info)]. [e:E]. [v:C].
  uiff(v  lifting-1(f)|X|(e);b:B. ((v = (f b))  b  X(e)))


Proof not projected




Definitions occuring in Statement :  simple-comb-1: F|X| classrel: v  X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P  Q apply: f a function: x:A  B[x] universe: Type equal: s = t lifting-1: lifting-1(f)
Definitions :  uall: [x:A]. B[x] so_lambda: x.t[x] bag-member: x  bs so_lambda: x y.t[x; y] btrue: tt bfalse: ff lt_int: i <z j bnot: b le_int: i z j ifthenelse: if b then t else f fi  ycomb: Y label: ...$L... t ge: i  j  lelt: i  j < k length: ||as|| false: False implies: P  Q not: A le: A  B int_seg: {i..j} nat: true: True uimplies: b supposing a member: t  T select: l[i] and: P  Q squash: T lifting-1: lifting-1(f) simple-comb-1: F|X| classrel: v  X(e) uiff: uiff(P;Q) cand: A c B prop: exists: x:A. B[x] so_apply: x[s] so_apply: x[s1;s2] guard: {T} sq_type: SQType(T) or: P  Q all: x:A. B[x] decidable: Dec(P) simple-comb1: x.F[x]|X| subtype: S  T
Lemmas :  event-ordering+_wf equal_wf and_wf exists_wf squash_wf bag_wf lelt_wf lifting1_wf event-ordering+_inc es-E_wf eclass_wf int_subtype_base subtype_base_sq decidable__equal_int int_seg_wf length_wf_nat non_neg_length length_cons length_wf_nil length_nil length_wf select_wf le_wf simple-comb_wf classrel_wf simple-comb1-classrel

\mforall{}[Info,B,C:Type].  \mforall{}[f:B  {}\mrightarrow{}  C].  \mforall{}[X:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:C].
    uiff(v  \mmember{}  lifting-1(f)|X|(e);\mdownarrow{}\mexists{}b:B.  ((v  =  (f  b))  \mwedge{}  b  \mmember{}  X(e)))


Date html generated: 2012_01_23-PM-01_11_24
Last ObjectModification: 2011_12_05-PM-12_31_05

Home Index