{ [T:Id  Type]. [tab:secret-table(T)].
    [x:Atom1]. [n:||tab|| ].
      ((isl(st-lookup(tab;x)))
         c (outl(st-lookup(tab;x)) = <key(tab;n), data(tab;n)>)) supposing 
         ((st-atom(tab;n) = x) and 
         (n  ptr(tab))) 
    supposing atoms-distinct(tab) }

{ Proof }



Definitions occuring in Statement :  st-atoms-distinct: atoms-distinct(tab) st-lookup: st-lookup(tab;x) st-data: data(tab;n) st-key: key(tab;n) st-atom: st-atom(tab;n) st-ptr: ptr(tab) st-length: ||tab||  secret-table: secret-table(T) data: data(T) Id: Id outl: outl(x) isl: isl(x) assert: b int_seg: {i..j} nat: uimplies: b supposing a uall: [x:A]. B[x] cand: A c B le: A  B function: x:A  B[x] pair: <a, b> product: x:A  B[x] union: left + right natural_number: $n universe: Type equal: s = t atom: Atom$n
Definitions :  pi1: fst(t) bool: fpf: a:A fp-B[a] unit: Unit list: type List strong-subtype: strong-subtype(A;B) ge: i  j  uiff: uiff(P;Q) less_than: a < b subtype_rel: A r B lambda: x.A[x] st-data: data(tab;n) st-key: key(tab;n) outl: outl(x) st-lookup: st-lookup(tab;x) isl: isl(x) union: left + right data: data(T) so_lambda: x.t[x] axiom: Ax void: Void true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b cand: A c B st-atom: st-atom(tab;n) limited-type: LimitedType false: False not: A st-ptr: ptr(tab) rationals: and: P  Q lelt: i  j < k le: A  B set: {x:A| B[x]}  real: grp_car: |g| subtype: S  T nat: st-length: ||tab||  natural_number: $n int_seg: {i..j} pair: <a, b> int: implies: P  Q atom: Atom$n product: x:A  B[x] prop: st-atoms-distinct: atoms-distinct(tab) uimplies: b supposing a isect: x:A. B[x] all: x:A. B[x] uall: [x:A]. B[x] secret-table: secret-table(T) Id: Id function: x:A  B[x] equal: s = t universe: Type member: t  T tactic: Error :tactic,  iff: P  Q rev_implies: P  Q exists: x:A. B[x] guard: {T} sq_type: SQType(T)
Lemmas :  st-lookup-outl subtype_base_sq int_subtype_base st-lookup-property not_wf outl_wf nat_wf data_wf unit_wf st-lookup_wf st-data_wf st-key_wf st-length_wf st-ptr_wf true_wf isl_wf ifthenelse_wf false_wf assert_wf assert_witness pair_wf st-atom_wf int_seg_properties le_wf int_seg_wf st-atoms-distinct_wf secret-table_wf Id_wf

\mforall{}[T:Id  {}\mrightarrow{}  Type].  \mforall{}[tab:secret-table(T)].
    \mforall{}[x:Atom1].  \mforall{}[n:\mBbbN{}||tab||  ].
        ((\muparrow{}isl(st-lookup(tab;x)))  c\mwedge{}  (outl(st-lookup(tab;x))  =  <key(tab;n),  data(tab;n)>))  supposing 
              ((st-atom(tab;n)  =  x)  and 
              (n  \mleq{}  ptr(tab))) 
    supposing  atoms-distinct(tab)


Date html generated: 2011_08_16-AM-11_00_20
Last ObjectModification: 2011_06_18-AM-09_33_55

Home Index