{ [T:Id  Type]. [tab:secret-table(T)]. [x:Atom1].
    (st-lookup(tab;x)   + Atom1  data(T)?) }

{ Proof }



Definitions occuring in Statement :  st-lookup: st-lookup(tab;x) secret-table: secret-table(T) data: data(T) Id: Id nat: uall: [x:A]. B[x] unit: Unit member: t  T function: x:A  B[x] product: x:A  B[x] union: left + right universe: Type atom: Atom$n
Definitions :  uall: [x:A]. B[x] member: t  T st-lookup: st-lookup(tab;x) spreadn: spread3 all: x:A. B[x] implies: P  Q int_seg: {i..j} bor: p q btrue: tt prop: and: P  Q ifthenelse: if b then t else f fi  bfalse: ff top: Top lelt: i  j < k subtype: S  T exists: x:A. B[x] assert: b true: True let: let or: P  Q so_lambda: x.t[x] squash: T secret-table: secret-table(T) uimplies: b supposing a nat: bool: unit: Unit iff: P  Q so_apply: x[s] it:
Lemmas :  secret-table_wf Id_wf mu_wf le_int_wf bool_wf iff_weakening_uiff le_wf uiff_transitivity assert_wf eqtt_to_assert assert_of_le_int bor_wf lt_int_wf btrue_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int eq_atom_wf1 pi1_wf_top nat_wf data_wf bnot_of_lt_int decidable__assert decidable_wf it_wf band_wf pi2_wf unit_wf assert_of_bor or_functionality_wrt_uiff bnot_thru_bor squash_wf true_wf assert_of_band and_functionality_wrt_uiff

\mforall{}[T:Id  {}\mrightarrow{}  Type].  \mforall{}[tab:secret-table(T)].  \mforall{}[x:Atom1].    (st-lookup(tab;x)  \mmember{}  \mBbbN{}  +  Atom1  \mtimes{}  data(T)?)


Date html generated: 2011_08_16-AM-10_59_36
Last ObjectModification: 2011_06_18-AM-09_33_25

Home Index