Nuprl Lemma : st-ptr-wf2

[T:Id  Type]. [tab:secret-table(T)].  ptr(tab)  ||tab||  supposing isl(next(tab))


Proof not projected




Definitions occuring in Statement :  st-next: next(tab) st-ptr: ptr(tab) st-length: ||tab||  secret-table: secret-table(T) Id: Id isl: isl(x) assert: b int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] member: t  T function: x:A  B[x] natural_number: $n universe: Type
Definitions :  bfalse: ff btrue: tt exposed-bfalse: exposed-bfalse subtype: S  T so_lambda: x.t[x] top: Top pi2: snd(t) pi1: fst(t) ifthenelse: if b then t else f fi  false: False implies: P  Q not: A all: x:A. B[x] and: P  Q le: A  B lelt: i  j < k st-ptr: ptr(tab) st-length: ||tab||  int_seg: {i..j} member: t  T st-next: next(tab) isl: isl(x) uimplies: b supposing a uall: [x:A]. B[x] sq_type: SQType(T) or: P  Q guard: {T} uiff: uiff(P;Q) unit: Unit so_apply: x[s] bool: prop: nat: assert: b secret-table: secret-table(T) it:
Lemmas :  bool_subtype_base subtype_base_sq bool_cases Id_wf secret-table_wf bfalse_wf assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff eqff_to_assert bnot_wf le_wf le_int_wf btrue_wf assert_of_lt_int eqtt_to_assert less_than_wf equal_wf uiff_transitivity bool_wf data_wf int_seg_wf pi2_wf pi1_wf_top lt_int_wf assert_wf st-length_wf lelt_wf nat_wf st-ptr_wf

\mforall{}[T:Id  {}\mrightarrow{}  Type].  \mforall{}[tab:secret-table(T)].    ptr(tab)  \mmember{}  \mBbbN{}||tab||    supposing  \muparrow{}isl(next(tab))


Date html generated: 2012_01_23-PM-12_14_24
Last ObjectModification: 2011_12_13-AM-10_34_48

Home Index