Nuprl Lemma : MMTree-definition

[T,A:Type]. ∀[R:A ─→ MMTree(T) ─→ ℙ].
  ((∀val:T. {x:A| R[x;MMTree_Leaf(val)]} )
   (∀forest:MMTree(T) List List. ((∀u∈forest.(∀u1∈u.{x:A| R[x;u1]} ))  {x:A| R[x;MMTree_Node(forest)]} ))
   {∀v:MMTree(T). {x:A| R[x;v]} })


Proof




Definitions occuring in Statement :  MMTree_Node: MMTree_Node(forest) MMTree_Leaf: MMTree_Leaf(val) MMTree: MMTree(T) l_all: (∀x∈L.P[x]) list: List uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ─→ B[x] universe: Type
Lemmas :  MMTree-induction set_wf all_wf list_wf MMTree_wf l_all_wf2 l_member_wf MMTree_Node_wf MMTree_Leaf_wf
\mforall{}[T,A:Type].  \mforall{}[R:A  {}\mrightarrow{}  MMTree(T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}val:T.  \{x:A|  R[x;MMTree\_Leaf(val)]\}  )
    {}\mRightarrow{}  (\mforall{}forest:MMTree(T)  List  List
                ((\mforall{}u\mmember{}forest.(\mforall{}u1\mmember{}u.\{x:A|  R[x;u1]\}  ))  {}\mRightarrow{}  \{x:A|  R[x;MMTree\_Node(forest)]\}  ))
    {}\mRightarrow{}  \{\mforall{}v:MMTree(T).  \{x:A|  R[x;v]\}  \})



Date html generated: 2015_07_17-AM-07_47_19
Last ObjectModification: 2015_01_27-AM-09_39_22

Home Index