Nuprl Lemma : MMTree-induction

[T:Type]. ∀[P:MMTree(T) ─→ ℙ].
  ((∀val:T. P[MMTree_Leaf(val)])
   (∀forest:MMTree(T) List List. ((∀u∈forest.(∀u1∈u.P[u1]))  P[MMTree_Node(forest)]))
   {∀v:MMTree(T). P[v]})


Proof




Definitions occuring in Statement :  MMTree_Node: MMTree_Node(forest) MMTree_Leaf: MMTree_Leaf(val) MMTree: MMTree(T) l_all: (∀x∈L.P[x]) list: List uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ─→ B[x] universe: Type
Lemmas :  uniform-comp-nat-induction all_wf isect_wf le_wf MMTree_size_wf nat_wf less_than_wf MMTree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom sum-nat length_wf_nat sum_wf select_wf sq_stable__le int_seg_wf length_wf non_neg_sum zero-le-nat decidable__lt list_wf MMTree_wf false_wf add_functionality_wrt_le add-swap add-commutes le-add-cancel sum-nat-less sum-nat-le subtract_wf decidable__le not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-zero subtract-is-less lelt_wf uall_wf le_weakening l_all_wf2 l_member_wf MMTree_Node_wf MMTree_Leaf_wf
\mforall{}[T:Type].  \mforall{}[P:MMTree(T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}val:T.  P[MMTree\_Leaf(val)])
    {}\mRightarrow{}  (\mforall{}forest:MMTree(T)  List  List.  ((\mforall{}u\mmember{}forest.(\mforall{}u1\mmember{}u.P[u1]))  {}\mRightarrow{}  P[MMTree\_Node(forest)]))
    {}\mRightarrow{}  \{\mforall{}v:MMTree(T).  P[v]\})



Date html generated: 2015_07_17-AM-07_47_18
Last ObjectModification: 2015_01_27-AM-09_39_43

Home Index