Nuprl Lemma : MMTree-induction
∀[T:Type]. ∀[P:MMTree(T) ─→ ℙ].
  ((∀val:T. P[MMTree_Leaf(val)])
  
⇒ (∀forest:MMTree(T) List List. ((∀u∈forest.(∀u1∈u.P[u1])) 
⇒ P[MMTree_Node(forest)]))
  
⇒ {∀v:MMTree(T). P[v]})
Proof
Definitions occuring in Statement : 
MMTree_Node: MMTree_Node(forest)
, 
MMTree_Leaf: MMTree_Leaf(val)
, 
MMTree: MMTree(T)
, 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
uniform-comp-nat-induction, 
all_wf, 
isect_wf, 
le_wf, 
MMTree_size_wf, 
nat_wf, 
less_than_wf, 
MMTree-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
sum-nat, 
length_wf_nat, 
sum_wf, 
select_wf, 
sq_stable__le, 
int_seg_wf, 
length_wf, 
non_neg_sum, 
zero-le-nat, 
decidable__lt, 
list_wf, 
MMTree_wf, 
false_wf, 
add_functionality_wrt_le, 
add-swap, 
add-commutes, 
le-add-cancel, 
sum-nat-less, 
sum-nat-le, 
subtract_wf, 
decidable__le, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-zero, 
subtract-is-less, 
lelt_wf, 
uall_wf, 
le_weakening, 
l_all_wf2, 
l_member_wf, 
MMTree_Node_wf, 
MMTree_Leaf_wf
\mforall{}[T:Type].  \mforall{}[P:MMTree(T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}val:T.  P[MMTree\_Leaf(val)])
    {}\mRightarrow{}  (\mforall{}forest:MMTree(T)  List  List.  ((\mforall{}u\mmember{}forest.(\mforall{}u1\mmember{}u.P[u1]))  {}\mRightarrow{}  P[MMTree\_Node(forest)]))
    {}\mRightarrow{}  \{\mforall{}v:MMTree(T).  P[v]\})
Date html generated:
2015_07_17-AM-07_47_18
Last ObjectModification:
2015_01_27-AM-09_39_43
Home
Index