Nuprl Lemma : MMTree_Node_wf
∀[T:Type]. ∀[forest:MMTree(T) List List].  (MMTree_Node(forest) ∈ MMTree(T))
Proof
Definitions occuring in Statement : 
MMTree_Node: MMTree_Node(forest)
, 
MMTree: MMTree(T)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
MMTreeco-ext, 
subtype_rel_list, 
list_wf, 
MMTreeco_wf, 
eq_atom_wf, 
bool_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
eqtt_to_assert, 
assert_of_eq_atom, 
add_nat_wf, 
false_wf, 
le_wf, 
sum-nat, 
length_wf_nat, 
select_wf, 
sq_stable__le, 
MMTree_size_wf, 
int_seg_wf, 
length_wf, 
nat_wf, 
value-type-has-value, 
set-value-type, 
int-value-type, 
has-value_wf-partial, 
MMTreeco_size_wf, 
MMTree_wf
\mforall{}[T:Type].  \mforall{}[forest:MMTree(T)  List  List].    (MMTree\_Node(forest)  \mmember{}  MMTree(T))
Date html generated:
2015_07_17-AM-07_47_02
Last ObjectModification:
2015_01_27-AM-09_39_34
Home
Index