Nuprl Lemma : RankEx2-definition

[S,T,A:Type]. ∀[R:A ─→ RankEx2(S;T) ─→ ℙ].
  ((∀leaft:T. {x:A| R[x;RankEx2_LeafT(leaft)]} )
   (∀leafs:S. {x:A| R[x;RankEx2_LeafS(leafs)]} )
   (∀prod:RankEx2(S;T) × S × T
        (let u,u1 prod in let u1,u2 in {x:A| R[x;u1]}   {x:A| R[x;RankEx2_Prod(prod)]} ))
   (∀union:S × RankEx2(S;T) RankEx2(S;T)
        (case union of inl(u) => let u1,u2 in {x:A| R[x;u2]}  inr(u1) => {x:A| R[x;u1]} 
         {x:A| R[x;RankEx2_Union(union)]} ))
   (∀listprod:(S × RankEx2(S;T)) List
        ((∀u∈listprod.let u1,u2 in {x:A| R[x;u2]}  {x:A| R[x;RankEx2_ListProd(listprod)]} ))
   (∀unionlist:T (RankEx2(S;T) List)
        (case unionlist of inl(u) => True inr(u1) => (∀u∈u1.{x:A| R[x;u]}  {x:A| R[x;RankEx2_UnionList(unionlist)]\000C} ))
   {∀v:RankEx2(S;T). {x:A| R[x;v]} })


Proof




Definitions occuring in Statement :  RankEx2_UnionList: RankEx2_UnionList(unionlist) RankEx2_ListProd: RankEx2_ListProd(listprod) RankEx2_Union: RankEx2_Union(union) RankEx2_Prod: RankEx2_Prod(prod) RankEx2_LeafS: RankEx2_LeafS(leafs) RankEx2_LeafT: RankEx2_LeafT(leaft) RankEx2: RankEx2(S;T) l_all: (∀x∈L.P[x]) list: List uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] implies:  Q true: True set: {x:A| B[x]}  function: x:A ─→ B[x] spread: spread def product: x:A × B[x] decide: case of inl(x) => s[x] inr(y) => t[y] union: left right universe: Type
Lemmas :  RankEx2-induction set_wf all_wf list_wf RankEx2_wf true_wf l_all_wf2 l_member_wf RankEx2_UnionList_wf RankEx2_ListProd_wf RankEx2_Union_wf RankEx2_Prod_wf RankEx2_LeafS_wf RankEx2_LeafT_wf
\mforall{}[S,T,A:Type].  \mforall{}[R:A  {}\mrightarrow{}  RankEx2(S;T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}leaft:T.  \{x:A|  R[x;RankEx2\_LeafT(leaft)]\}  )
    {}\mRightarrow{}  (\mforall{}leafs:S.  \{x:A|  R[x;RankEx2\_LeafS(leafs)]\}  )
    {}\mRightarrow{}  (\mforall{}prod:RankEx2(S;T)  \mtimes{}  S  \mtimes{}  T
                (let  u,u1  =  prod  in  let  u1,u2  =  u  in  \{x:A|  R[x;u1]\}    {}\mRightarrow{}  \{x:A|  R[x;RankEx2\_Prod(prod)]\}  ))
    {}\mRightarrow{}  (\mforall{}union:S  \mtimes{}  RankEx2(S;T)  +  RankEx2(S;T)
                (case  union  of  inl(u)  =>  let  u1,u2  =  u  in  \{x:A|  R[x;u2]\}    |  inr(u1)  =>  \{x:A|  R[x;u1]\} 
                {}\mRightarrow{}  \{x:A|  R[x;RankEx2\_Union(union)]\}  ))
    {}\mRightarrow{}  (\mforall{}listprod:(S  \mtimes{}  RankEx2(S;T))  List
                ((\mforall{}u\mmember{}listprod.let  u1,u2  =  u  in  \{x:A|  R[x;u2]\}  )  {}\mRightarrow{}  \{x:A|  R[x;RankEx2\_ListProd(listprod)]\}  ))
    {}\mRightarrow{}  (\mforall{}unionlist:T  +  (RankEx2(S;T)  List)
                (case  unionlist  of  inl(u)  =>  True  |  inr(u1)  =>  (\mforall{}u\mmember{}u1.\{x:A|  R[x;u]\}  )
                {}\mRightarrow{}  \{x:A|  R[x;RankEx2\_UnionList(unionlist)]\}  ))
    {}\mRightarrow{}  \{\mforall{}v:RankEx2(S;T).  \{x:A|  R[x;v]\}  \})



Date html generated: 2015_07_17-AM-07_50_17
Last ObjectModification: 2015_01_27-AM-09_37_17

Home Index