Nuprl Lemma : RankEx2_Union_wf
∀[S,T:Type]. ∀[union:S × RankEx2(S;T) + RankEx2(S;T)].  (RankEx2_Union(union) ∈ RankEx2(S;T))
Proof
Definitions occuring in Statement : 
RankEx2_Union: RankEx2_Union(union)
, 
RankEx2: RankEx2(S;T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
union: left + right
, 
universe: Type
Lemmas : 
RankEx2co-ext, 
subtype_rel_sum, 
RankEx2co_wf, 
subtype_rel_product, 
eq_atom_wf, 
bool_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
eqtt_to_assert, 
assert_of_eq_atom, 
list_wf, 
add_nat_wf, 
false_wf, 
le_wf, 
RankEx2_size_wf, 
nat_wf, 
value-type-has-value, 
set-value-type, 
int-value-type, 
has-value_wf-partial, 
RankEx2co_size_wf, 
RankEx2_wf
\mforall{}[S,T:Type].  \mforall{}[union:S  \mtimes{}  RankEx2(S;T)  +  RankEx2(S;T)].    (RankEx2\_Union(union)  \mmember{}  RankEx2(S;T))
Date html generated:
2015_07_17-AM-07_49_15
Last ObjectModification:
2015_01_27-AM-09_37_38
Home
Index