Nuprl Lemma : RankEx2_Union_wf

[S,T:Type]. ∀[union:S × RankEx2(S;T) RankEx2(S;T)].  (RankEx2_Union(union) ∈ RankEx2(S;T))


Proof




Definitions occuring in Statement :  RankEx2_Union: RankEx2_Union(union) RankEx2: RankEx2(S;T) uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] union: left right universe: Type
Lemmas :  RankEx2co-ext subtype_rel_sum RankEx2co_wf subtype_rel_product eq_atom_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom eqtt_to_assert assert_of_eq_atom list_wf add_nat_wf false_wf le_wf RankEx2_size_wf nat_wf value-type-has-value set-value-type int-value-type has-value_wf-partial RankEx2co_size_wf RankEx2_wf
\mforall{}[S,T:Type].  \mforall{}[union:S  \mtimes{}  RankEx2(S;T)  +  RankEx2(S;T)].    (RankEx2\_Union(union)  \mmember{}  RankEx2(S;T))



Date html generated: 2015_07_17-AM-07_49_15
Last ObjectModification: 2015_01_27-AM-09_37_38

Home Index