Nuprl Lemma : RankEx2co_size_wf

[S,T:Type]. ∀[p:RankEx2co(S;T)].  (RankEx2co_size(p) ∈ partial(ℕ))


Proof




Definitions occuring in Statement :  RankEx2co_size: RankEx2co_size(p) RankEx2co: RankEx2co(S;T) partial: partial(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Lemmas :  fix_wf_corec-partial1 nat_wf set-value-type le_wf int-value-type nat-mono eq_atom_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom eqtt_to_assert assert_of_eq_atom list_wf subtype_rel_product subtype_rel_sum subtype_rel_list subtype_rel_wf strong-continuous-depproduct continuous-constant strong-continuous-product continuous-id strong-continuous-union strong-continuous-list subtype_rel_weakening atom_subtype_base false_wf inclusion-partial add-wf-partial-nat sum-partial-nat length_wf_nat select_wf sq_stable__le int_seg_wf length_wf partial_wf RankEx2co_wf
\mforall{}[S,T:Type].  \mforall{}[p:RankEx2co(S;T)].    (RankEx2co\_size(p)  \mmember{}  partial(\mBbbN{}))



Date html generated: 2015_07_17-AM-07_48_54
Last ObjectModification: 2015_01_27-AM-09_40_08

Home Index