Nuprl Lemma : strong-continuous-list

[F:Type ⟶ Type]. Continuous+(T.F[T] List) supposing Continuous+(T.F[T])


Proof




Definitions occuring in Statement :  list: List strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a strong-type-continuous: Continuous+(T.F[T]) ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] all: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q int_seg: {i..j-} ge: i ≥  guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  nat_wf list_wf strong-type-continuous_wf false_wf le_wf nat_properties length_wf_nat equal_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf length_wf ge_wf less_than_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma first0 subtype_rel_list top_wf nil_wf firstn_decomp append_wf cons_wf lelt_wf firstn_all
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lambdaEquality isectEquality extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin applyEquality functionExtensionality hypothesisEquality universeEquality isect_memberEquality productElimination independent_pairEquality axiomEquality functionEquality cumulativity because_Cache equalityTransitivity equalitySymmetry lambdaFormation dependent_set_memberEquality natural_numberEquality dependent_functionElimination independent_functionElimination setElimination rename independent_isectElimination unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll intWeakElimination comment

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  Continuous+(T.F[T]  List)  supposing  Continuous+(T.F[T])



Date html generated: 2017_04_17-AM-08_49_32
Last ObjectModification: 2017_02_27-PM-05_07_59

Theory : list_1


Home Index