Nuprl Lemma : firstn_decomp
∀[T:Type]. ∀[j:ℕ]. ∀[l:T List]. (firstn(j - 1;l) @ [l[j - 1]] ~ firstn(j;l)) supposing (j - 1 < ||l|| and 0 < j)
Proof
Definitions occuring in Statement :
firstn: firstn(n;as)
,
select: L[n]
,
length: ||as||
,
append: as @ bs
,
cons: [a / b]
,
nil: []
,
list: T List
,
nat: ℕ
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
subtract: n - m
,
natural_number: $n
,
universe: Type
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
guard: {T}
,
uimplies: b supposing a
,
prop: ℙ
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
uiff: uiff(P;Q)
,
subtract: n - m
,
subtype_rel: A ⊆r B
,
top: Top
,
le: A ≤ B
,
true: True
,
sq_type: SQType(T)
,
firstn: firstn(n;as)
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
lt_int: i <z j
,
select: L[n]
,
cons: [a / b]
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
btrue: tt
,
append: as @ bs
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
exists: ∃x:A. B[x]
,
bnot: ¬bb
,
assert: ↑b
Lemmas referenced :
nat_properties,
less_than_transitivity1,
less_than_irreflexivity,
ge_wf,
less_than_wf,
subtract_wf,
length_wf,
list_wf,
decidable__le,
false_wf,
not-ge-2,
less-iff-le,
condition-implies-le,
minus-one-mul,
zero-add,
minus-one-mul-top,
minus-add,
minus-minus,
add-associates,
add-swap,
add-commutes,
add_functionality_wrt_le,
add-zero,
le-add-cancel,
nat_wf,
decidable__equal_int,
subtype_base_sq,
int_subtype_base,
list_decomp,
decidable__lt,
not-lt-2,
le_antisymmetry_iff,
list_ind_cons_lemma,
list_ind_nil_lemma,
first0,
tl_wf,
subtype_rel_list,
top_wf,
not-equal-2,
le-add-cancel2,
squash_wf,
true_wf,
length_tl,
iff_weakening_equal,
lt_int_wf,
bool_wf,
equal-wf-base,
assert_wf,
eqtt_to_assert,
assert_of_lt_int,
select-cons-tl,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
le_int_wf,
le_wf,
bnot_wf,
uiff_transitivity,
assert_functionality_wrt_uiff,
bnot_of_lt_int,
assert_of_le_int
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
lambdaFormation,
natural_numberEquality,
independent_isectElimination,
independent_functionElimination,
voidElimination,
sqequalRule,
lambdaEquality,
dependent_functionElimination,
isect_memberEquality,
sqequalAxiom,
cumulativity,
equalityTransitivity,
equalitySymmetry,
imageElimination,
productElimination,
because_Cache,
unionElimination,
independent_pairFormation,
addEquality,
applyEquality,
voidEquality,
intEquality,
minusEquality,
universeEquality,
instantiate,
imageMemberEquality,
baseClosed,
baseApply,
closedConclusion,
equalityElimination,
dependent_pairFormation,
promote_hyp
Latex:
\mforall{}[T:Type]. \mforall{}[j:\mBbbN{}]. \mforall{}[l:T List].
(firstn(j - 1;l) @ [l[j - 1]] \msim{} firstn(j;l)) supposing (j - 1 < ||l|| and 0 < j)
Date html generated:
2017_04_14-AM-08_48_03
Last ObjectModification:
2017_02_27-PM-03_35_09
Theory : list_0
Home
Index