Nuprl Lemma : set-sig-isEmpty_wf
∀[Item:Type]. ∀[s:set-sig{i:l}(Item)].  (set-sig-isEmpty(s) ∈ set-sig-set(s) ─→ 𝔹)
Proof
Definitions occuring in Statement : 
set-sig-isEmpty: set-sig-isEmpty(s)
, 
set-sig-set: set-sig-set(s)
, 
set-sig: set-sig{i:l}(Item)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
subtype_rel_self, 
valueall-type_wf, 
bool_wf, 
all_wf, 
not_wf, 
assert_wf, 
iff_wf, 
equal_wf, 
or_wf, 
set-sig_wf
\mforall{}[Item:Type].  \mforall{}[s:set-sig\{i:l\}(Item)].    (set-sig-isEmpty(s)  \mmember{}  set-sig-set(s)  {}\mrightarrow{}  \mBbbB{})
Date html generated:
2015_07_17-AM-08_21_11
Last ObjectModification:
2015_04_02-PM-05_42_54
Home
Index