Nuprl Lemma : hdf-bind-gen-ap-eq

[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:B ─→ hdataflow(A;C)]. ∀[hdfs:bag(hdataflow(A;C))]. ∀[a:A].
  (hdfs) >>Y(a)
  = <fst(X(a)) ([y∈bag-map(λP.(fst(P(a)));hdfs bag-map(Y;snd(X(a))))|¬bhdf-halted(y)]) >>Y
    , ∪p∈bag-map(λP.P(a);hdfs bag-map(Y;snd(X(a)))).snd(p)
    >
  ∈ (hdataflow(A;C) × bag(C)) 
  supposing valueall-type(C)


Proof




Definitions occuring in Statement :  hdf-bind-gen: (hdfs) >>Y hdf-halted: hdf-halted(P) hdf-ap: X(a) hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) bnot: ¬bb uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) lambda: λx.A[x] function: x:A ─→ B[x] pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T bag-combine: x∈bs.f[x] bag-filter: [x∈b|p[x]] bag-append: as bs bag-map: bag-map(f;bs) bag: bag(T)
Lemmas :  hdf-bind-gen-ap hdf-bind-gen_wf hdf-ap_wf hdataflow_wf bag_wf bag-filter_wf bnot_wf hdf-halted_wf bag-map_wf bag-append_wf subtype_rel_bag assert_wf bag-combine_wf valueall-type_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:B  {}\mrightarrow{}  hdataflow(A;C)].  \mforall{}[hdfs:bag(hdataflow(A;C))].  \mforall{}[a:A].
    X  (hdfs)  >>=  Y(a)
    =  <fst(X(a))  ([y\mmember{}bag-map(\mlambda{}P.(fst(P(a)));hdfs  +  bag-map(Y;snd(X(a))))|\mneg{}\msubb{}hdf-halted(y)])  >>=  Y
        ,  \mcup{}p\mmember{}bag-map(\mlambda{}P.P(a);hdfs  +  bag-map(Y;snd(X(a)))).snd(p)
        > 
    supposing  valueall-type(C)



Date html generated: 2015_07_17-AM-08_07_04
Last ObjectModification: 2015_01_27-PM-00_06_32

Home Index