Nuprl Lemma : hdf-bind_wf

[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:B ─→ hdataflow(A;C)].  X >>Y ∈ hdataflow(A;C) supposing valueall-type(C)


Proof




Definitions occuring in Statement :  hdf-bind: X >>Y hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  mk-hdf_wf bag_wf hdataflow_wf empty-bag_wf hdf-halted_wf bool_wf eqtt_to_assert bag-null_wf bind-nxt_wf valueall-type_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:B  {}\mrightarrow{}  hdataflow(A;C)].
    X  >>=  Y  \mmember{}  hdataflow(A;C)  supposing  valueall-type(C)



Date html generated: 2015_07_17-AM-08_06_53
Last ObjectModification: 2015_01_27-PM-00_06_41

Home Index