Nuprl Lemma : hdf-compose0_wf

[A,B,C:Type]. ∀[f:B ─→ bag(C)]. ∀[X:hdataflow(A;B)].  hdf-compose0(f;X) ∈ hdataflow(A;C) supposing valueall-type(C)


Proof




Definitions occuring in Statement :  hdf-compose0: hdf-compose0(f;X) hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type bag: bag(T)
Lemmas :  mk-hdf_wf hdf-halted_wf hdf-ap_wf bag_wf valueall-type-has-valueall bag-valueall-type bag-combine_wf evalall-reduce valueall-type_wf hdataflow_wf
\mforall{}[A,B,C:Type].  \mforall{}[f:B  {}\mrightarrow{}  bag(C)].  \mforall{}[X:hdataflow(A;B)].
    hdf-compose0(f;X)  \mmember{}  hdataflow(A;C)  supposing  valueall-type(C)



Date html generated: 2015_07_17-AM-08_05_23
Last ObjectModification: 2015_01_27-PM-00_15_59

Home Index