Nuprl Lemma : slln-lemma4
∀p:FinProbSpace. ∀f:ℕ ─→ ℕ. ∀X:n:ℕ ─→ RandomVariable(p;f[n]).
(rv-iid(p;n.f[n];n.X[n])
⇒ nullset(p;λs.∃q:ℚ. (0 < q ∧ (∀n:ℕ. ∃m:ℕ. (n < m ∧ (q ≤ |Σ0 ≤ i < m. (1/m) * (X[i] s)|)))))
supposing E(f[0];X[0]) = 0 ∈ ℚ)
Proof
Definitions occuring in Statement :
rv-iid: rv-iid(p;n.f[n];i.X[i])
,
nullset: nullset(p;S)
,
expectation: E(n;F)
,
random-variable: RandomVariable(p;n)
,
finite-prob-space: FinProbSpace
,
nat: ℕ
,
less_than: a < b
,
uimplies: b supposing a
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
apply: f a
,
lambda: λx.A[x]
,
function: x:A ─→ B[x]
,
natural_number: $n
,
equal: s = t ∈ T
,
qdiv: (r/s)
,
qmul: r * s
,
rationals: ℚ
Lemmas :
slln-lemma3,
expectation_wf,
false_wf,
le_wf,
rv-compose_wf,
qmul_wf,
rationals_wf,
int_seg_wf,
equal-wf-T-base,
rv-iid_wf,
nat_wf,
random-variable_wf,
finite-prob-space_wf,
and_wf,
equal_wf
\mforall{}p:FinProbSpace. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \mforall{}X:n:\mBbbN{} {}\mrightarrow{} RandomVariable(p;f[n]).
(rv-iid(p;n.f[n];n.X[n])
{}\mRightarrow{} nullset(p;\mlambda{}s.\mexists{}q:\mBbbQ{}. (0 < q \mwedge{} (\mforall{}n:\mBbbN{}. \mexists{}m:\mBbbN{}. (n < m \mwedge{} (q \mleq{} |\mSigma{}0 \mleq{} i < m. (1/m) * (X[i] s)|)))))
supposing E(f[0];X[0]) = 0)
Date html generated:
2015_07_17-AM-08_04_18
Last ObjectModification:
2015_01_27-AM-11_22_50
Home
Index