Nuprl Lemma : slln-lemma4

p:FinProbSpace. ∀f:ℕ ─→ ℕ. ∀X:n:ℕ ─→ RandomVariable(p;f[n]).
  (rv-iid(p;n.f[n];n.X[n])
   nullset(p;λs.∃q:ℚ(0 < q ∧ (∀n:ℕ. ∃m:ℕ(n < m ∧ (q ≤ 0 ≤ i < m. (1/m) (X[i] s)|))))) 
     supposing E(f[0];X[0]) 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  rv-iid: rv-iid(p;n.f[n];i.X[i]) nullset: nullset(p;S) expectation: E(n;F) random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace nat: less_than: a < b uimplies: supposing a so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a lambda: λx.A[x] function: x:A ─→ B[x] natural_number: $n equal: t ∈ T qdiv: (r/s) qmul: s rationals:
Lemmas :  slln-lemma3 expectation_wf false_wf le_wf rv-compose_wf qmul_wf rationals_wf int_seg_wf equal-wf-T-base rv-iid_wf nat_wf random-variable_wf finite-prob-space_wf and_wf equal_wf
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).
    (rv-iid(p;n.f[n];n.X[n])
    {}\mRightarrow{}  nullset(p;\mlambda{}s.\mexists{}q:\mBbbQ{}.  (0  <  q  \mwedge{}  (\mforall{}n:\mBbbN{}.  \mexists{}m:\mBbbN{}.  (n  <  m  \mwedge{}  (q  \mleq{}  |\mSigma{}0  \mleq{}  i  <  m.  (1/m)  *  (X[i]  s)|))))) 
          supposing  E(f[0];X[0])  =  0)



Date html generated: 2015_07_17-AM-08_04_18
Last ObjectModification: 2015_01_27-AM-11_22_50

Home Index