Nuprl Lemma : function-Leibniz-type

A:Type. ∀B:A ⟶ Type.  ((∀a:A. Leibniz-type{i:l}(B[a]))  Leibniz-type{i:l}(a:A ⟶ B[a]))


Proof




Definitions occuring in Statement :  Leibniz-type: Leibniz-type{i:l}(T) so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q Leibniz-type: Leibniz-type{i:l}(T) exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] and: P ∧ Q subtype_rel: A ⊆B prop: or: P ∨ Q iff: ⇐⇒ Q not: ¬A false: False rev_implies:  Q pi1: fst(t) guard: {T}
Lemmas referenced :  Leibniz-type_wf istype-universe subtype_rel_self istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution sqequalRule cut hypothesis promote_hyp thin productElimination functionIsType universeIsType hypothesisEquality introduction extract_by_obid isectElimination cumulativity applyEquality inhabitedIsType instantiate universeEquality because_Cache productIsType unionIsType equalityIstype rename dependent_pairFormation_alt lambdaEquality_alt functionExtensionality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productEquality independent_pairFormation unionElimination inlFormation_alt inrFormation_alt voidElimination dependent_set_memberEquality_alt applyLambdaEquality setElimination

Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.    ((\mforall{}a:A.  Leibniz-type\{i:l\}(B[a]))  {}\mRightarrow{}  Leibniz-type\{i:l\}(a:A  {}\mrightarrow{}  B[a]))



Date html generated: 2019_10_31-AM-07_25_53
Last ObjectModification: 2019_09_19-PM-04_52_44

Theory : constructive!algebra


Home Index