Nuprl Lemma : Leibniz-type_wf

[T:𝕌']. (Leibniz-type{i:l}(T) ∈ 𝕌')


Proof




Definitions occuring in Statement :  Leibniz-type: Leibniz-type{i:l}(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Leibniz-type: Leibniz-type{i:l}(T) exists: x:A. B[x] prop: and: P ∧ Q all: x:A. B[x] implies:  Q subtype_rel: A ⊆B or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  subtype_rel_self iff_wf equal_wf not_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule productEquality functionEquality hypothesisEquality universeEquality cumulativity applyEquality hypothesis thin instantiate extract_by_obid sqequalHypSubstitution isectElimination unionEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:\mBbbU{}'].  (Leibniz-type\{i:l\}(T)  \mmember{}  \mBbbU{}')



Date html generated: 2019_10_31-AM-07_25_47
Last ObjectModification: 2019_09_19-PM-04_36_23

Theory : constructive!algebra


Home Index