Nuprl Lemma : Leibniz-type_wf
∀[T:𝕌']. (Leibniz-type{i:l}(T) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
Leibniz-type: Leibniz-type{i:l}(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
Leibniz-type: Leibniz-type{i:l}(T)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
subtype_rel_self, 
iff_wf, 
equal_wf, 
not_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
functionEquality, 
hypothesisEquality, 
universeEquality, 
cumulativity, 
applyEquality, 
hypothesis, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
unionEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:\mBbbU{}'].  (Leibniz-type\{i:l\}(T)  \mmember{}  \mBbbU{}')
Date html generated:
2019_10_31-AM-07_25_47
Last ObjectModification:
2019_09_19-PM-04_36_23
Theory : constructive!algebra
Home
Index