Nuprl Lemma : set-Leibniz-type

A:Type. (Leibniz-type{i:l}(A)  (∀B:A ⟶ ℙLeibniz-type{i:l}({a:A| B[a]} )))


Proof




Definitions occuring in Statement :  Leibniz-type: Leibniz-type{i:l}(T) prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q Leibniz-type: Leibniz-type{i:l}(T) exists: x:A. B[x] member: t ∈ T and: P ∧ Q subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a istype: istype(T) cand: c∧ B iff: ⇐⇒ Q not: ¬A false: False rev_implies:  Q or: P ∨ Q guard: {T}
Lemmas referenced :  subtype_rel_dep_function istype-void Leibniz-type_wf istype-universe equal_functionality_wrt_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin dependent_pairFormation_alt cut hypothesisEquality applyEquality instantiate introduction extract_by_obid isectElimination cumulativity sqequalRule lambdaEquality_alt functionEquality universeEquality universeIsType setEquality hypothesis because_Cache setIsType independent_isectElimination setElimination rename inhabitedIsType independent_pairFormation independent_functionElimination voidElimination equalityIstype dependent_set_memberEquality_alt functionIsType productIsType unionIsType equalityTransitivity equalitySymmetry dependent_functionElimination

Latex:
\mforall{}A:Type.  (Leibniz-type\{i:l\}(A)  {}\mRightarrow{}  (\mforall{}B:A  {}\mrightarrow{}  \mBbbP{}.  Leibniz-type\{i:l\}(\{a:A|  B[a]\}  )))



Date html generated: 2019_10_31-AM-07_26_08
Last ObjectModification: 2019_09_19-PM-06_48_11

Theory : constructive!algebra


Home Index