Nuprl Lemma : coset-relation-setrel
∀R:coSet{i:l}. coSetRelation(setrel(R))
Proof
Definitions occuring in Statement : 
setrel: setrel(R), 
coset-relation: coSetRelation(R), 
coSet: coSet{i:l}, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
setrel: setrel(R), 
coset-relation: coSetRelation(R), 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ
Lemmas referenced : 
setmem_functionality_1, 
orderedpairset_wf, 
orderedpairset_functionality, 
seteq_weakening, 
seteq_inversion, 
setmem_wf, 
seteq_wf, 
coSet_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
productElimination, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}R:coSet\{i:l\}.  coSetRelation(setrel(R))
 Date html generated: 
2020_05_20-PM-01_19_14
 Last ObjectModification: 
2020_01_06-PM-01_23_37
Theory : constructive!set!theory
Home
Index