Nuprl Lemma : funset_wf2

[A,B:Set{i:l}].  (A ⟶ B ∈ Set{i:l})


Proof




Definitions occuring in Statement :  funset: A ⟶ B Set: Set{i:l} uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] funset: A ⟶ B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  set-subtype-coSet setmem_wf Set_wf Piset_wf2
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality because_Cache applyEquality cumulativity hypothesis setEquality lambdaEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A,B:Set\{i:l\}].    (A  {}\mrightarrow{}  B  \mmember{}  Set\{i:l\})



Date html generated: 2018_07_29-AM-10_05_26
Last ObjectModification: 2018_07_18-PM-03_33_54

Theory : constructive!set!theory


Home Index