Nuprl Lemma : Piset_wf2

[A:Set{i:l}]. ∀[B:{a:Set{i:l}| (a ∈ A)}  ⟶ Set{i:l}].  a:A.B[a] ∈ Set{i:l})


Proof




Definitions occuring in Statement :  Piset: Πa:A.B[a] Set: Set{i:l} setmem: (x ∈ s) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  exists: x:A. B[x] uimplies: supposing a all: x:A. B[x] prop: subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] Piset: Πa:A.B[a] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  set-subtype-coSet piset_wf subtype_rel_set coSet_wf coSet-mem-Set-implies-Set singlevalued-graph_wf setmem_wf Set_wf piset_wf2 sub-set_wf2
Rules used in proof :  isect_memberEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality instantiate dependent_pairFormation independent_isectElimination dependent_set_memberEquality rename setElimination dependent_functionElimination because_Cache cumulativity hypothesis setEquality applyEquality lambdaEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:Set\{i:l\}].  \mforall{}[B:\{a:Set\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  Set\{i:l\}].    (\mPi{}a:A.B[a]  \mmember{}  Set\{i:l\})



Date html generated: 2018_07_29-AM-10_05_08
Last ObjectModification: 2018_07_18-PM-03_32_59

Theory : constructive!set!theory


Home Index