Nuprl Lemma : Piset_wf2
∀[A:Set{i:l}]. ∀[B:{a:Set{i:l}| (a ∈ A)}  ⟶ Set{i:l}].  (Πa:A.B[a] ∈ Set{i:l})
Proof
Definitions occuring in Statement : 
Piset: Πa:A.B[a]
, 
Set: Set{i:l}
, 
setmem: (x ∈ s)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
Piset: Πa:A.B[a]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
set-subtype-coSet, 
piset_wf, 
subtype_rel_set, 
coSet_wf, 
coSet-mem-Set-implies-Set, 
singlevalued-graph_wf, 
setmem_wf, 
Set_wf, 
piset_wf2, 
sub-set_wf2
Rules used in proof : 
isect_memberEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
instantiate, 
dependent_pairFormation, 
independent_isectElimination, 
dependent_set_memberEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
because_Cache, 
cumulativity, 
hypothesis, 
setEquality, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:Set\{i:l\}].  \mforall{}[B:\{a:Set\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  Set\{i:l\}].    (\mPi{}a:A.B[a]  \mmember{}  Set\{i:l\})
Date html generated:
2018_07_29-AM-10_05_08
Last ObjectModification:
2018_07_18-PM-03_32_59
Theory : constructive!set!theory
Home
Index