Nuprl Lemma : piset_wf
∀[A:coSet{i:l}]. ∀[B:{a:coSet{i:l}| (a ∈ A)}  ⟶ coSet{i:l}].  (piset(A;a.B[a]) ∈ coSet{i:l})
Proof
Definitions occuring in Statement : 
piset: piset(A;a.B[a])
, 
setmem: (x ∈ s)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
mk-coset: mk-coset(T;f)
, 
piset: piset(A;a.B[a])
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
set-item_wf, 
orderedpairset_wf, 
setmem-coset, 
setmem_wf, 
coSet_wf, 
set-dom_wf, 
mk-coset_wf, 
coSet_subtype, 
subtype_coSet
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
universeEquality, 
lambdaEquality, 
because_Cache, 
setEquality, 
functionExtensionality, 
cumulativity, 
functionEquality, 
isectElimination, 
thin, 
productElimination, 
sqequalRule, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
hypothesis_subsumption, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:coSet\{i:l\}].  \mforall{}[B:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  coSet\{i:l\}].    (piset(A;a.B[a])  \mmember{}  coSet\{i:l\})
Date html generated:
2018_07_29-AM-10_04_22
Last ObjectModification:
2018_07_18-PM-03_27_30
Theory : constructive!set!theory
Home
Index