Nuprl Lemma : graph-cosets_wf
∀[I:Type]. ∀[E:I ⟶ I ⟶ ℙ].  (graph-cosets(I;i,j.E[i;j]) ∈ I ⟶ coSet{i:l})
Proof
Definitions occuring in Statement : 
graph-cosets: graph-cosets(I;i,j.E[i; j])
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
graph-cosets: graph-cosets(I;i,j.E[i; j])
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
fix_wf_coSet_system_weak, 
subtype_rel_self, 
pi1_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_pairEquality, 
productEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
instantiate, 
because_Cache, 
functionEquality, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I:Type].  \mforall{}[E:I  {}\mrightarrow{}  I  {}\mrightarrow{}  \mBbbP{}].    (graph-cosets(I;i,j.E[i;j])  \mmember{}  I  {}\mrightarrow{}  coSet\{i:l\})
Date html generated:
2019_10_31-AM-06_33_03
Last ObjectModification:
2018_08_08-AM-08_17_18
Theory : constructive!set!theory
Home
Index