Nuprl Lemma : isSet-set-predicate
∀s:coSet{i:l}. set-predicate{i:l}(s;x.isSet(x))
Proof
Definitions occuring in Statement : 
set-predicate: set-predicate{i:l}(s;a.P[a])
, 
isSet: isSet(w)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
set-predicate: set-predicate{i:l}(s;a.P[a])
, 
all: ∀x:A. B[x]
Lemmas referenced : 
coSet_wf, 
setmem_wf, 
seteq_wf, 
isSet_wf, 
isSet_functionality
Rules used in proof : 
isectElimination, 
productElimination, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}s:coSet\{i:l\}.  set-predicate\{i:l\}(s;x.isSet(x))
Date html generated:
2018_07_29-AM-09_52_15
Last ObjectModification:
2018_07_25-PM-03_40_56
Theory : constructive!set!theory
Home
Index