Nuprl Lemma : isSet-set-predicate

s:coSet{i:l}. set-predicate{i:l}(s;x.isSet(x))


Proof




Definitions occuring in Statement :  set-predicate: set-predicate{i:l}(s;a.P[a]) isSet: isSet(w) coSet: coSet{i:l} all: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] prop: and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T implies:  Q set-predicate: set-predicate{i:l}(s;a.P[a]) all: x:A. B[x]
Lemmas referenced :  coSet_wf setmem_wf seteq_wf isSet_wf isSet_functionality
Rules used in proof :  isectElimination productElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}s:coSet\{i:l\}.  set-predicate\{i:l\}(s;x.isSet(x))



Date html generated: 2018_07_29-AM-09_52_15
Last ObjectModification: 2018_07_25-PM-03_40_56

Theory : constructive!set!theory


Home Index