Nuprl Lemma : natset_wf
∀[n:ℕ]. (natset(n) ∈ Set{i:l})
Proof
Definitions occuring in Statement : 
natset: natset(n)
, 
Set: Set{i:l}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
nat: ℕ
, 
natset: natset(n)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat_wf, 
int_seg_wf, 
plus-set_wf, 
emptyset_wf, 
Set_wf, 
primrec_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
rename, 
setElimination, 
natural_numberEquality, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  (natset(n)  \mmember{}  Set\{i:l\})
Date html generated:
2018_05_29-PM-01_49_32
Last ObjectModification:
2018_05_24-PM-11_27_14
Theory : constructive!set!theory
Home
Index