Nuprl Lemma : natset_wf

[n:ℕ]. (natset(n) ∈ Set{i:l})


Proof




Definitions occuring in Statement :  natset: natset(n) Set: Set{i:l} nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  nat: natset: natset(n) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf int_seg_wf plus-set_wf emptyset_wf Set_wf primrec_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality rename setElimination natural_numberEquality lambdaEquality hypothesisEquality hypothesis isectElimination sqequalHypSubstitution extract_by_obid instantiate thin sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  (natset(n)  \mmember{}  Set\{i:l\})



Date html generated: 2018_05_29-PM-01_49_32
Last ObjectModification: 2018_05_24-PM-11_27_14

Theory : constructive!set!theory


Home Index