Nuprl Lemma : regularExtension

a:Set{i:l}. ∃r:Set{i:l}. ((a ⊆ r) ∧ regular(r))


Proof




Definitions occuring in Statement :  regularset: regular(A) setsubset: (a ⊆ b) Set: Set{i:l} all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] cand: c∧ B prop: implies:  Q and: P ∧ Q exists: x:A. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  Set_wf regularset_wf setsubset_wf Regularset-regularset RegularExtension
Rules used in proof :  isectElimination cumulativity productEquality independent_functionElimination promote_hyp independent_pairFormation dependent_pairFormation productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}a:Set\{i:l\}.  \mexists{}r:Set\{i:l\}.  ((a  \msubseteq{}  r)  \mwedge{}  regular(r))



Date html generated: 2018_05_29-PM-01_53_06
Last ObjectModification: 2018_05_24-PM-03_28_23

Theory : constructive!set!theory


Home Index