Nuprl Lemma : regularExtension
∀a:Set{i:l}. ∃r:Set{i:l}. ((a ⊆ r) ∧ regular(r))
Proof
Definitions occuring in Statement : 
regularset: regular(A), 
setsubset: (a ⊆ b), 
Set: Set{i:l}, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
cand: A c∧ B, 
prop: ℙ, 
implies: P ⇒ Q, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
Set_wf, 
regularset_wf, 
setsubset_wf, 
Regularset-regularset, 
RegularExtension
Rules used in proof : 
isectElimination, 
cumulativity, 
productEquality, 
independent_functionElimination, 
promote_hyp, 
independent_pairFormation, 
dependent_pairFormation, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}a:Set\{i:l\}.  \mexists{}r:Set\{i:l\}.  ((a  \msubseteq{}  r)  \mwedge{}  regular(r))
 Date html generated: 
2018_05_29-PM-01_53_06
 Last ObjectModification: 
2018_05_24-PM-03_28_23
Theory : constructive!set!theory
Home
Index