Nuprl Lemma : Regularset-regularset
∀A:Set{i:l}. (Regular(A) 
⇒ regular(A))
Proof
Definitions occuring in Statement : 
Regularset: Regular(A)
, 
regularset: regular(A)
, 
Set: Set{i:l}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
regularset: regular(A)
, 
Regularset: Regular(A)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
onto-map_wf, 
set-relation-setrel, 
Set_wf, 
Regularset_wf, 
set_wf, 
coSet_wf, 
subtype_rel_dep_function, 
setrel_wf, 
set-subtype-coSet, 
mv-map_wf, 
setmem_wf, 
coSet-mem-Set-implies-Set
Rules used in proof : 
productEquality, 
rename, 
setElimination, 
setEquality, 
universeEquality, 
functionEquality, 
cumulativity, 
lambdaEquality, 
instantiate, 
independent_functionElimination, 
sqequalRule, 
because_Cache, 
applyEquality, 
dependent_pairFormation, 
independent_isectElimination, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
dependent_functionElimination, 
independent_pairFormation, 
hypothesis, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}A:Set\{i:l\}.  (Regular(A)  {}\mRightarrow{}  regular(A))
Date html generated:
2018_07_29-AM-10_06_53
Last ObjectModification:
2018_07_20-PM-03_25_44
Theory : constructive!set!theory
Home
Index