Nuprl Lemma : Regularset-regularset

A:Set{i:l}. (Regular(A)  regular(A))


Proof




Definitions occuring in Statement :  Regularset: Regular(A) regularset: regular(A) Set: Set{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: exists: x:A. B[x] uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T cand: c∧ B and: P ∧ Q regularset: regular(A) Regularset: Regular(A) implies:  Q all: x:A. B[x]
Lemmas referenced :  onto-map_wf set-relation-setrel Set_wf Regularset_wf set_wf coSet_wf subtype_rel_dep_function setrel_wf set-subtype-coSet mv-map_wf setmem_wf coSet-mem-Set-implies-Set
Rules used in proof :  productEquality rename setElimination setEquality universeEquality functionEquality cumulativity lambdaEquality instantiate independent_functionElimination sqequalRule because_Cache applyEquality dependent_pairFormation independent_isectElimination hypothesisEquality isectElimination extract_by_obid introduction dependent_functionElimination independent_pairFormation hypothesis cut thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}A:Set\{i:l\}.  (Regular(A)  {}\mRightarrow{}  regular(A))



Date html generated: 2018_07_29-AM-10_06_53
Last ObjectModification: 2018_07_20-PM-03_25_44

Theory : constructive!set!theory


Home Index