Nuprl Lemma : set-relation-setrel

R:coSet{i:l}. SetRelation(setrel(R))


Proof




Definitions occuring in Statement :  setrel: setrel(R) set-relation: SetRelation(R) coSet: coSet{i:l} all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] setrel: setrel(R) set-relation: SetRelation(R) implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop:
Lemmas referenced :  setmem_functionality_1 orderedpairset_wf set-subtype-coSet orderedpairset_functionality seteq_weakening seteq_inversion setmem_wf seteq_wf Set_wf coSet_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination applyEquality hypothesis because_Cache independent_functionElimination productElimination universeIsType inhabitedIsType

Latex:
\mforall{}R:coSet\{i:l\}.  SetRelation(setrel(R))



Date html generated: 2020_05_20-PM-01_19_11
Last ObjectModification: 2020_01_06-PM-01_23_40

Theory : constructive!set!theory


Home Index