Nuprl Lemma : set-relation-setrel
∀R:coSet{i:l}. SetRelation(setrel(R))
Proof
Definitions occuring in Statement : 
setrel: setrel(R)
, 
set-relation: SetRelation(R)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
setrel: setrel(R)
, 
set-relation: SetRelation(R)
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
Lemmas referenced : 
setmem_functionality_1, 
orderedpairset_wf, 
set-subtype-coSet, 
orderedpairset_functionality, 
seteq_weakening, 
seteq_inversion, 
setmem_wf, 
seteq_wf, 
Set_wf, 
coSet_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
applyEquality, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
productElimination, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}R:coSet\{i:l\}.  SetRelation(setrel(R))
Date html generated:
2020_05_20-PM-01_19_11
Last ObjectModification:
2020_01_06-PM-01_23_40
Theory : constructive!set!theory
Home
Index