Nuprl Lemma : regularset_wf
∀[A:coSet{i:l}]. (regular(A) ∈ ℙ')
Proof
Definitions occuring in Statement : 
regularset: regular(A)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
regularset: regular(A)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
onto-map_wf, 
exists_wf, 
setrel_wf, 
mv-map_wf, 
setmem_wf, 
coSet_wf, 
all_wf, 
transitive-set_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
functionEquality, 
instantiate, 
universeEquality, 
cumulativity, 
lambdaEquality, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:coSet\{i:l\}].  (regular(A)  \mmember{}  \mBbbP{}')
Date html generated:
2018_07_29-AM-10_06_43
Last ObjectModification:
2018_07_20-PM-01_28_26
Theory : constructive!set!theory
Home
Index