Nuprl Lemma : regularset_wf

[A:coSet{i:l}]. (regular(A) ∈ ℙ')


Proof




Definitions occuring in Statement :  regularset: regular(A) coSet: coSet{i:l} uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] exists: x:A. B[x] so_apply: x[s] implies:  Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B and: P ∧ Q prop: regularset: regular(A) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  onto-map_wf exists_wf setrel_wf mv-map_wf setmem_wf coSet_wf all_wf transitive-set_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality because_Cache functionEquality instantiate universeEquality cumulativity lambdaEquality applyEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid productEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:coSet\{i:l\}].  (regular(A)  \mmember{}  \mBbbP{}')



Date html generated: 2018_07_29-AM-10_06_43
Last ObjectModification: 2018_07_20-PM-01_28_26

Theory : constructive!set!theory


Home Index