Nuprl Lemma : RegularExtension
∀a:Set{i:l}. ∃r:Set{i:l}. ((a ⊆ r) ∧ Regular(r))
Proof
Definitions occuring in Statement : 
Regularset: Regular(A)
, 
setsubset: (a ⊆ b)
, 
Set: Set{i:l}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
prop: ℙ
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
setTC-transitive, 
subset-regext, 
setTC-contains, 
setsubset_transitivity, 
Set_wf, 
Regularset_wf, 
setsubset_wf, 
regext-Regularset, 
setTC_wf, 
regext_wf
Rules used in proof : 
because_Cache, 
independent_functionElimination, 
cumulativity, 
productEquality, 
dependent_functionElimination, 
independent_pairFormation, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
dependent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a:Set\{i:l\}.  \mexists{}r:Set\{i:l\}.  ((a  \msubseteq{}  r)  \mwedge{}  Regular(r))
Date html generated:
2018_05_29-PM-01_53_03
Last ObjectModification:
2018_05_24-PM-03_27_09
Theory : constructive!set!theory
Home
Index