Nuprl Lemma : RegularExtension

a:Set{i:l}. ∃r:Set{i:l}. ((a ⊆ r) ∧ Regular(r))


Proof




Definitions occuring in Statement :  Regularset: Regular(A) setsubset: (a ⊆ b) Set: Set{i:l} all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q
Definitions unfolded in proof :  implies:  Q prop: cand: c∧ B and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] all: x:A. B[x]
Lemmas referenced :  setTC-transitive subset-regext setTC-contains setsubset_transitivity Set_wf Regularset_wf setsubset_wf regext-Regularset setTC_wf regext_wf
Rules used in proof :  because_Cache independent_functionElimination cumulativity productEquality dependent_functionElimination independent_pairFormation hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut dependent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:Set\{i:l\}.  \mexists{}r:Set\{i:l\}.  ((a  \msubseteq{}  r)  \mwedge{}  Regular(r))



Date html generated: 2018_05_29-PM-01_53_03
Last ObjectModification: 2018_05_24-PM-03_27_09

Theory : constructive!set!theory


Home Index