Nuprl Lemma : regext-Regularset

a:Set{i:l}. Regular(regext(a))


Proof




Definitions occuring in Statement :  regext: regext(a) Regularset: Regular(A) Set: Set{i:l} all: x:A. B[x]
Definitions unfolded in proof :  set-relation: SetRelation(R) rev_implies:  Q iff: ⇐⇒ Q guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] onto-map: R:(A ─>> B) mv-map:  R:(A  B) cand: c∧ B coset-relation: coSetRelation(R) exists: x:A. B[x] uimplies: supposing a uall: [x:A]. B[x] prop: implies:  Q Regularset: Regular(A) and: P ∧ Q Regularcoset: cRegular(A) subtype_rel: A ⊆B member: t ∈ T all: x:A. B[x]
Lemmas referenced :  seteq_inversion setmem_functionality_1 set-relation_wf onto-map_wf set_wf subtype_rel_self coSet-subtype-Set subtype_rel_dep_function mv-map_wf seteq_wf coSet_wf regext_wf2 coSet-mem-Set-implies-Set Set_wf regext_wf setmem_wf set-subtype-coSet regext-Regularcoset
Rules used in proof :  setEquality functionEquality instantiate dependent_pairFormation independent_isectElimination functionExtensionality universeEquality cumulativity because_Cache isectElimination productEquality lambdaEquality independent_functionElimination independent_pairFormation productElimination sqequalRule applyEquality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}a:Set\{i:l\}.  Regular(regext(a))



Date html generated: 2018_07_29-AM-10_07_41
Last ObjectModification: 2018_07_20-PM-01_48_22

Theory : constructive!set!theory


Home Index