Nuprl Lemma : setTC_wf

[a:Set{i:l}]. (setTC(a) ∈ Set{i:l})


Proof




Definitions occuring in Statement :  setTC: setTC(a) Set: Set{i:l} uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] Set: Set{i:l} so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q subtype_rel: A ⊆B prop: implies:  Q pcw-pp-barred: Barred(pp) int_seg: {i..j-} nat: ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False cw-step: cw-step(A;a.B[a]) pcw-step: pcw-step spreadn: spread3 less_than: a < b less_than': less_than'(a;b) true: True squash: T isr: isr(x) assert: b ifthenelse: if then else fi  bfalse: ff btrue: tt ext-eq: A ≡ B unit: Unit it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda3 so_apply: x[s1;s2;s3] ext-family: F ≡ G pi1: fst(t) nat_plus: + W-rel: W-rel(A;a.B[a];w) param-W-rel: param-W-rel pcw-steprel: StepRel(s1;s2) pi2: snd(t) isl: isl(x) pcw-step-agree: StepAgree(s;p1;w) cand: c∧ B guard: {T} Wsup: Wsup(a;b) sq_type: SQType(T) le: A ≤ B sq_stable: SqStable(P) mk-set: f"(T) setTC: setTC(a) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  Set_wf W-elimination-facts istype-universe subtype_rel_self subtract_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt istype-le istype-less_than istype-top istype-void istype-true add-subtract-cancel itermAdd_wf int_term_value_add_lemma W-ext param-co-W-ext unit_wf2 it_wf param-co-W_wf top_wf pcw-steprel_wf true_wf false_wf subtype_rel_dep_function less_than_wf subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma subtype_rel_function int_seg_wf int_seg_subtype istype-false sq_stable__le setmem_wf set-subtype-coSet mk-set_wf setmem-mk-set-sq set-add_wf2 setunionfun_wf2 setmem_functionality seteq_weakening seteq_inversion plus-set_wf2 plus-set_wf setmem-plus-set
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution hypothesis universeIsType introduction extract_by_obid thin lambdaFormation_alt hypothesisEquality instantiate dependent_functionElimination universeEquality sqequalRule lambdaEquality_alt cumulativity isectElimination productElimination strong_bar_Induction equalityTransitivity equalitySymmetry applyEquality independent_functionElimination dependent_set_memberEquality_alt setElimination rename natural_numberEquality independent_pairFormation unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  voidElimination productIsType because_Cache inhabitedIsType lessCases axiomSqEquality isect_memberEquality_alt isectIsTypeImplies imageMemberEquality baseClosed imageElimination closedConclusion axiomEquality equalityIstype addEquality int_eqReduceTrueSq promote_hyp hypothesis_subsumption equalityElimination dependent_pairEquality_alt inlEquality_alt unionIsType productEquality unionEquality hyp_replacement applyLambdaEquality intEquality setIsType inrFormation dependent_set_memberEquality

Latex:
\mforall{}[a:Set\{i:l\}].  (setTC(a)  \mmember{}  Set\{i:l\})



Date html generated: 2020_05_20-PM-01_18_42
Last ObjectModification: 2020_01_06-PM-01_24_39

Theory : constructive!set!theory


Home Index