Nuprl Lemma : setunionfun_wf2

[s:Set{i:l}]. ∀[f:{x:Set{i:l}| (x ∈ s)}  ⟶ Set{i:l}].  ( ⋃x∈s.f[x] ∈ Set{i:l})


Proof




Definitions occuring in Statement :  setunionfun:  ⋃x∈s.f[x] Set: Set{i:l} setmem: (x ∈ s) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  so_lambda: λ2x.t[x] all: x:A. B[x] prop: so_apply: x[s] mkset: {f[t] t ∈ T} setunionfun:  ⋃x∈s.f[x] Wsup: Wsup(a;b) mk-set: f"(T) subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  set-item_wf2 setmem-mk-set mk-set_wf set-subtype-coSet setmem_wf Set_wf set-dom_wf mkset_wf set-subtype subtype-set
Rules used in proof :  isect_memberEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality dependent_set_memberEquality dependent_functionElimination universeEquality lambdaEquality because_Cache setEquality functionExtensionality cumulativity productEquality isectElimination rename thin productElimination sqequalRule sqequalHypSubstitution applyEquality hypothesisEquality hypothesis extract_by_obid hypothesis_subsumption cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[s:Set\{i:l\}].  \mforall{}[f:\{x:Set\{i:l\}|  (x  \mmember{}  s)\}    {}\mrightarrow{}  Set\{i:l\}].    (  \mcup{}x\mmember{}s.f[x]  \mmember{}  Set\{i:l\})



Date html generated: 2018_07_29-AM-09_52_48
Last ObjectModification: 2018_07_18-PM-02_33_20

Theory : constructive!set!theory


Home Index