Nuprl Lemma : setunionfun_wf2
∀[s:Set{i:l}]. ∀[f:{x:Set{i:l}| (x ∈ s)}  ⟶ Set{i:l}].  ( ⋃x∈s.f[x] ∈ Set{i:l})
Proof
Definitions occuring in Statement : 
setunionfun:  ⋃x∈s.f[x]
, 
Set: Set{i:l}
, 
setmem: (x ∈ s)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
mkset: {f[t] | t ∈ T}
, 
setunionfun:  ⋃x∈s.f[x]
, 
Wsup: Wsup(a;b)
, 
mk-set: f"(T)
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
set-item_wf2, 
setmem-mk-set, 
mk-set_wf, 
set-subtype-coSet, 
setmem_wf, 
Set_wf, 
set-dom_wf, 
mkset_wf, 
set-subtype, 
subtype-set
Rules used in proof : 
isect_memberEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
universeEquality, 
lambdaEquality, 
because_Cache, 
setEquality, 
functionExtensionality, 
cumulativity, 
productEquality, 
isectElimination, 
rename, 
thin, 
productElimination, 
sqequalRule, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
hypothesis_subsumption, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[s:Set\{i:l\}].  \mforall{}[f:\{x:Set\{i:l\}|  (x  \mmember{}  s)\}    {}\mrightarrow{}  Set\{i:l\}].    (  \mcup{}x\mmember{}s.f[x]  \mmember{}  Set\{i:l\})
Date html generated:
2018_07_29-AM-09_52_48
Last ObjectModification:
2018_07_18-PM-02_33_20
Theory : constructive!set!theory
Home
Index